Last active
June 16, 2023 13:55
-
-
Save sinc/1a7aa9c034b77f3a8195b725a6440179 to your computer and use it in GitHub Desktop.
Parametrics phase methods
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def phase1MNK(sig1, sig2, N, K = 0, Q = 1): | |
num = 0.0 | |
denom = 0.0 | |
for n in range(K+4, N+K): | |
x1n = sig1[n - Q*0] | |
x1n1 = sig1[n - Q*1] | |
x1n3 = sig1[n - Q*3] | |
x1n4 = sig1[n - Q*4] | |
x2n = sig2[n - Q*0] | |
x2n1 = sig2[n - Q*1] | |
x2n3 = sig2[n - Q*3] | |
x2n4 = sig2[n - Q*4] | |
A1 = x1n4*x2n - x1n*x2n4 | |
A2 = x1n3*x2n1 - x1n1*x2n3 | |
A3 = x1n3*x2n1 + x1n1*x2n3 | |
A4 = x1n1*x2n1 + x1n3*x2n3 | |
C = A1*A3-2*A2*A4 | |
if 4*(A2**2)-A1**2 >= 0: | |
num += abs(A2)*math.sqrt(4*(A2**2)-A1**2)*C | |
denom += C**2 | |
if denom > 0: | |
return math.atan(num/denom) | |
return 1000 | |
def phase2MNK(sig1, sig2, N, Q = 1): | |
num = 0.0 | |
denom = 0.0 | |
for n in range(4, N): | |
x1n = sig1[n - Q*0] | |
x1n1 = sig1[n - Q*1] | |
x1n2 = sig1[n - Q*2] | |
x1n3 = sig1[n - Q*3] | |
x1n4 = sig1[n - Q*4] | |
x2n = sig2[n - Q*0] | |
x2n1 = sig2[n - Q*1] | |
x2n2 = sig2[n - Q*2] | |
x2n3 = sig2[n - Q*3] | |
x2n4 = sig2[n - Q*4] | |
A1 = x1n4*x2n - x1n*x2n4 | |
A2 = x1n3*x2n1 - x1n1*x2n3 | |
A5 = x1n3*x2n1 - x1n2*x2n2 | |
A6 = x1n1*x2n3 - x1n2*x2n2 | |
if 4*(A2**2)-A1**2 > 0: | |
num += ((A5**2)-(A6**2))*math.sqrt(4*(A2**2)-A1**2) | |
denom += ((A5+A6)**2)*(2*A2+A1) | |
if denom != 0.0: | |
if num > 0: | |
return math.atan(-num/denom) | |
return math.atan(num/denom) | |
return 1000 | |
def phase_aver(sig1, sig2, N, K = 0, Q = 1): | |
A1 = 0.0 | |
A2 = 0.0 | |
A5 = 0.0 | |
A6 = 0.0 | |
for n in range(K+4, N+K): | |
x1n = sig1[n - Q*0] | |
x1n1 = sig1[n - Q*1] | |
x1n2 = sig1[n - Q*2] | |
x1n3 = sig1[n - Q*3] | |
x1n4 = sig1[n - Q*4] | |
x2n = sig2[n - Q*0] | |
x2n1 = sig2[n - Q*1] | |
x2n2 = sig2[n - Q*2] | |
x2n3 = sig2[n - Q*3] | |
x2n4 = sig2[n - Q*4] | |
A1 += x1n4*x2n - x1n*x2n4 | |
A2 += x1n3*x2n1 - x1n1*x2n3 | |
A5 += x1n3*x2n1 - x1n2*x2n2 | |
A6 += x1n1*x2n3 - x1n2*x2n2 | |
#A1 /= N-4 | |
#A2 /= N-4 | |
#A5 /= N-4 | |
#A6 /= N-4 | |
num = (A5-A6)*np.sqrt((2.0*A2 - A1) / (2.0*A2 + A1)) | |
den = (A5+A6) | |
if den != 0.0: | |
if num > 0: | |
return math.atan(-num/den) | |
return math.atan(num/den) | |
return 1000 | |
def ph3p(sig1, sig2): | |
N = min(len(sig1), len(sig2)) | |
b1, b2, b3 = 0.0, 0.0, 0.0 | |
for n in range(2, N): | |
b1 += sig1[n-0]*sig2[n-2] - sig1[n-2]*sig2[n-0] | |
b2 += sig1[n-0]*sig2[n-1] - sig1[n-1]*sig2[n-0] + sig1[n-1]*sig2[n-2] - sig1[n-2]*sig2[n-1] | |
b3 += 2.0*sig1[n-1]*sig2[n-1] - sig1[n-0]*sig2[n-2] - sig1[n-2]*sig2[n-0] | |
return np.arctan2(np.sqrt(b2**2 - b1**2), b3) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment