Last active
July 4, 2018 19:23
-
-
Save singhay/5974ad493e9049cf9efa00d9b21bf26f to your computer and use it in GitHub Desktop.
Timedistribued Flatten after Timedistributed add throws symbolic tensor instance error
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def get_model(): | |
input_image_seqs = Input(shape=(None, 32, 32, 1), name='input_image_seqs') | |
bn1 = BatchNormalization()(input_image_seqs) | |
ac1 = Activation('elu')(bn1) | |
conv1 = TimeDistributed(Conv2D(32, (3, 3), strides=(1, 1), activation='elu', padding='same'))(ac1) | |
bn2 = BatchNormalization()(conv1) | |
ac2 = Activation('elu')(bn2) | |
conv2 = TimeDistributed(Conv2D(32, (3, 3), strides=(1, 1), activation='elu', padding='same'))(ac2) | |
residual_shape = K.int_shape(conv2) | |
ROW_AXIS = 1 | |
COL_AXIS = 2 | |
CHANNEL_AXIS = 3 | |
shortcut = TimeDistributed(Conv2D(filters=residual_shape[CHANNEL_AXIS], | |
kernel_size=(1, 1), | |
strides=(1, 1), | |
padding="valid", | |
kernel_initializer="he_normal", kernel_regularizer=l2(0.0001)))(input_image_seqs) | |
skip1 = TimeDistributed(add([shortcut, conv2])) | |
flat1 = TimeDistributed(Flatten())(skip1) | |
conv_dense1 = TimeDistributed(Dense(512, activation='elu'))(flat1) | |
lstm1 = Bidirectional(LSTM(512, return_sequences=True, activation='elu'), merge_mode='ave')(conv_dense1) | |
dense1 = Dense(3, activation=Pitanh)(lstm1) | |
model = Model(inputs=[input_image_seqs], outputs=dense1) | |
return model | |
''' | |
ERROR | |
--------------------------------------------------------------------------- | |
ValueError Traceback (most recent call last) | |
/usr/local/lib/python3.5/dist-packages/keras/engine/base_layer.py in assert_input_compatibility(self, inputs) | |
278 try: | |
--> 279 K.is_keras_tensor(x) | |
280 except ValueError: | |
/usr/local/lib/python3.5/dist-packages/keras/backend/tensorflow_backend.py in is_keras_tensor(x) | |
470 raise ValueError('Unexpectedly found an instance of type `' + | |
--> 471 str(type(x)) + '`. ' | |
472 'Expected a symbolic tensor instance.') | |
ValueError: Unexpectedly found an instance of type `<class 'keras.layers.wrappers.TimeDistributed'>`. Expected a symbolic tensor instance. | |
During handling of the above exception, another exception occurred: | |
ValueError Traceback (most recent call last) | |
<ipython-input-85-fe5b9b618138> in <module>() | |
----> 1 model = get_model() | |
2 model.compile(optimizer=Nadam(lr=0.002, beta_1=0.9, beta_2=0.999, | |
3 epsilon=None, schedule_decay=0.004, clipnorm=0.5), | |
4 loss='mse') | |
5 model.summary() | |
<ipython-input-84-1cb8f2a91a9d> in get_model() | |
19 kernel_initializer="he_normal", kernel_regularizer=l2(0.0001)))(input_image_seqs) | |
20 skip1 = TimeDistributed(add([shortcut, conv2])) | |
---> 21 flat1 = TimeDistributed(Flatten())(skip1) | |
22 conv_dense1 = TimeDistributed(Dense(512, activation='elu'))(flat1) | |
23 # embed1 = Embedding(input_dim=10, output_dim=100)(flat1) | |
/usr/local/lib/python3.5/dist-packages/keras/engine/base_layer.py in __call__(self, inputs, **kwargs) | |
412 # Raise exceptions in case the input is not compatible | |
413 # with the input_spec specified in the layer constructor. | |
--> 414 self.assert_input_compatibility(inputs) | |
415 | |
416 # Collect input shapes to build layer. | |
/usr/local/lib/python3.5/dist-packages/keras/engine/base_layer.py in assert_input_compatibility(self, inputs) | |
283 'Received type: ' + | |
284 str(type(x)) + '. Full input: ' + | |
--> 285 str(inputs) + '. All inputs to the layer ' | |
286 'should be tensors.') | |
287 | |
ValueError: Layer time_distributed_159 was called with an input that isn't a symbolic tensor. Received type: <class 'keras.layers.wrappers.TimeDistributed'>. Full input: [<keras.layers.wrappers.TimeDistributed object at 0x7f9dfe91bdd8>]. All inputs to the layer should be tensors. | |
''' |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment