Created
February 28, 2016 09:17
-
-
Save singhay/59dc684913626d35f75e to your computer and use it in GitHub Desktop.
A Simplified Support Vector Machine Sequential minimal optimization Algorithm
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Inspired from http://cs229.stanford.edu/materials/smo.pdf | |
import os | |
import numpy as np | |
import pandas as pd | |
import math | |
from sklearn.svm import LinearSVC | |
from sklearn.metrics import accuracy_score | |
def SMO(data, classLabel, constant, tolerance, maxpasses): | |
dataMatrix = np.array(data) | |
label = np.array(classLabel) | |
m,n = np.shape(dataMatrix) | |
alpha = np.zeros(m) | |
bias = 0 | |
count = 0 | |
passes = 0 | |
while(passes < maxpasses): | |
num_alphas_changed = 0 | |
for i in range(m): | |
Ei = float(E(dataMatrix,label,alpha,bias,i,m)) - float(label[i]) | |
if((label[i] * Ei < -tolerance and alpha[i] < constant) or | |
(label[i] * Ei > tolerance and alpha[i] > 0)): | |
while True: | |
j = int(np.random.uniform(0,m)) | |
if j != i: break | |
Ej = float(E(dataMatrix,label,alpha,bias,j,m)) - float(label[j]) | |
alphaI_old = alpha[i] | |
alphaJ_old = alpha[j] | |
if label[i] != label[j] : | |
L = max(0, alpha[j] - alpha[i]) | |
H = min(constant, constant + (alpha[j] - alpha[i])) | |
elif label[i] == label[j]: | |
L = max(0, (alpha[j] + alpha[i]) - constant) | |
H = min(constant, alpha[j] + alpha[i]) | |
if L == H: | |
# print"L == H" | |
continue | |
eta = 2.0 * (np.dot(dataMatrix[i],dataMatrix[j])) \ | |
- (np.dot(dataMatrix[i],dataMatrix[i])) \ | |
- (np.dot(dataMatrix[j],dataMatrix[j])) | |
if eta >= 0: | |
# print "eta is bigger" | |
continue | |
alpha[j] -= (label[j] * (Ei - Ej))/eta | |
alpha[j] = max(alpha[j], L) | |
alpha[j] = min(alpha[j], H) | |
if abs(alpha[j] - alphaJ_old) < 0.00001: | |
# print 'abs(alpha[j] - alphaJ_old) < 0.00001' | |
continue | |
alpha[i] += (label[i]*label[j]*(alphaJ_old - alpha[j])) | |
#updating bias | |
bias1 = bias - Ei - label[i]*(alpha[i] - alphaI_old) * \ | |
(np.dot(dataMatrix[i],dataMatrix[i])) - \ | |
label[j]*(alpha[j] - alphaJ_old) * (np.dot(dataMatrix[i],dataMatrix[j])) | |
bias2 = bias - Ej - label[i]*(alpha[i] - alphaI_old) * \ | |
(np.dot(dataMatrix[i],dataMatrix[j])) - \ | |
label[j]*(alpha[j] - alphaJ_old) * (np.dot(dataMatrix[j],dataMatrix[j])) | |
if 0 < alpha[i] < constant: | |
bias = bias1 | |
elif 0 < alpha[j] < constant: | |
bias = bias2 | |
else: | |
bias = (bias1 + bias2)/2.0 | |
if math.isnan(bias): | |
count += 1 | |
print "count", count | |
num_alphas_changed += 1 | |
# print 'Incremented alpha, ', num_alphas_changed | |
# print "iter: %d i:%d, pairs changed %d" % ( | |
# passes, i, num_alphas_changed) | |
passes += 1 if num_alphas_changed == 0 else 0 | |
print 'passes:', passes | |
# print [i for i in alpha] | |
print alpha | |
print 'Bias:',bias | |
def E(dataMatrix,label,alpha,bias,i,m): | |
return float(np.dot(np.multiply(alpha,label),(np.dot(dataMatrix[i],dataMatrix.T))) + bias) | |
#normalize in the range of 0 and 1 | |
def normalizeData(data): return data/255 | |
def main(): | |
dataFrame = pd.read_csv('a2_datasets/digits/train.csv') | |
train = dataFrame.iloc[1:6517, 1:] | |
train_label = dataFrame.iloc[1:6517, 0] | |
dataFrame_test = pd.read_csv('a2_datasets/digits/test.csv') | |
test = dataFrame_test.iloc[1:1629, 1:] | |
test_label = dataFrame_test.iloc[1:1629, 0] | |
SMO(train, train_label, 1.0, 0.8, 3) | |
lSMO = LinearSVC(C=1.0, tol=0.8, max_iter=3) | |
lSMO.fit(train, train_label) | |
print 'Accuracy from LinearSVM: {:.2f}%'.format(lSMO.score(test, test_label)*100) | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment