Created
June 1, 2019 05:02
-
-
Save singhrahuldps/b8f3904aff5c4e436c8fca13a99b59d6 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def train(epochs = 10, bs = 64): | |
for epoch in range(epochs): | |
# training the model | |
i=0 | |
total_loss = 0.0 | |
ct = 0 | |
while i < len(data[0]): | |
x1,x2,y = get_batch(data[0],i,i+bs) | |
i+=bs | |
ct+=1 | |
user_ids = torch.LongTensor([user2idx[u] for u in x1]).cuda() | |
item_ids = torch.LongTensor([item2idx[b] for b in x2]).cuda() | |
y = torch.Tensor(y).cuda() | |
# disregard/zero the gradients from previous computation | |
model.zero_grad() | |
preds = model(user_ids,item_ids) | |
loss = loss_function(preds, y) | |
loss.backward() | |
optimizer.step() | |
total_loss += loss.item() | |
total_loss /= ct | |
# getting the loss on validation set | |
i = 0 | |
total_val_loss = 0.0 | |
cv=0 | |
m = model.eval() # setting the model to evaluation mode | |
while i < len(data[1]): | |
x11,x21,y1 = get_batch(data[1],i,i+bs) | |
i+=bs | |
cv+=1 | |
user_ids = torch.LongTensor([user2idx[u] for u in x11]).cuda() | |
item_ids = torch.LongTensor([item2idx[b] for b in x21]).cuda() | |
y1 = torch.Tensor(y1).cuda() | |
preds = m(user_ids,item_ids) | |
loss = loss_function(preds, y1) | |
total_val_loss += loss.item() | |
total_val_loss /= cv | |
print('epoch', epoch+1, ' train loss', "%.3f" % total_loss, | |
' valid loss', "%.3f" % total_val_loss) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment