Created
February 17, 2017 18:31
-
-
Save sir-wabbit/2917182bb0f7d612fe647d14cf9d2792 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| def train_adadelta(func, fprime, x0, x_min, x_max, | |
| step_rate=1, decay=0.9, momentum=0, offset=1e-4, | |
| iterations=1000, tolerance=1e-1): | |
| x_min = x_min if x_min is not None else (np.ones_like(x0) * (-np.inf)) | |
| x_max = x_max if x_max is not None else (np.ones_like(x0) * np.inf) | |
| clamp = lambda x: np.where(x < x_min, x_min, | |
| np.where(x > x_max, x_max, x)) | |
| bounce = lambda x, dx: np.where(x + dx < x_min, x_min - x, | |
| np.where(x + dx > x_max, x_max - x, dx)) | |
| x = clamp(x0.copy()) | |
| start_nll = np.squeeze(func(x)) | |
| min = (x.copy(), 0, start_nll) | |
| Eg2 = 0 | |
| Edx2 = 0 | |
| step = 0 | |
| retries = 0 | |
| increase = 0 | |
| for i in range(iterations): | |
| if retries == 0: | |
| step1 = bounce(x, step * momentum) | |
| x += step1 | |
| g = fprime(x) | |
| Eg2 = decay * Eg2 + (1 - decay) * g ** 2 | |
| step2 = -(np.sqrt(Edx2 + offset) / np.sqrt(Eg2 + offset) * | |
| g * step_rate) | |
| step2 = bounce(x, step2) | |
| step = step1 + step2 | |
| Edx2 = decay * Edx2 + (1 - decay) * step ** 2 | |
| x += step2 | |
| nll = np.squeeze(func(x)) | |
| (_, _, min_nll) = min | |
| if min_nll > nll: | |
| min = (x.copy(), i + 1, nll) | |
| retries = 0 | |
| increase = 0 | |
| if np.abs(min_nll - nll) < tolerance: | |
| break | |
| else: | |
| increase += 1 | |
| if increase >= 5: | |
| retries += 1 | |
| increase = 0 | |
| else: | |
| (x, _, min_nll) = min | |
| step = -momentum * step | |
| step = bounce(x, step) | |
| x1 = x + step | |
| nll = np.squeeze(func(x1)) | |
| if min_nll > nll: | |
| Edx2 = step ** 2 | |
| x = x1 | |
| min = (x1.copy(), i + 1, nll) | |
| retries = 0 | |
| if np.abs(min_nll - nll) < tolerance: | |
| break | |
| elif abs(step).max() >= 1e-10: | |
| #print(nll, min_nll) | |
| retries += 1 | |
| else: | |
| # If the step is too short, just return 0. | |
| break | |
| print("NLL (%d/%d): %s" % (i + 1, retries, nll)) | |
| print("NLL (start): %s" % start_nll) | |
| print("NLL (done): %s" % nll) | |
| status = { | |
| 'grad_norm': la.norm(g), | |
| 'start_nll': start_nll, | |
| 'done_nll': nll, | |
| 'min_it': min[1], | |
| 'min_nll': min[-1]} | |
| return (min[0], min[-1], status) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment