Created
March 16, 2022 00:54
-
-
Save sithu/2b2c64cf509e739a761ea402f4fc3802 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import numpy as np | |
| import tensorflow as tf | |
| import matplotlib.pyplot as plt | |
| learning_rate = 0.01 | |
| training_epochs = 1000 | |
| num_labels = 3 | |
| batch_size = 100 | |
| x1_label0 = np.random.normal(1, 1, (100, 1)) | |
| x2_label0 = np.random.normal(1, 1, (100, 1)) | |
| x1_label1 = np.random.normal(5, 1, (100, 1)) | |
| x2_label1 = np.random.normal(4, 1, (100, 1)) | |
| x1_label2 = np.random.normal(8, 1, (100, 1)) | |
| x2_label2 = np.random.normal(0, 1, (100, 1)) | |
| plt.scatter(x1_label0, x2_label0, c='r', marker='o', s=60) | |
| plt.scatter(x1_label1, x2_label1, c='g', marker='x', s=60) | |
| plt.scatter(x1_label2, x2_label2, c='b', marker='_', s=60) | |
| plt.show() | |
| xs_label0 = np.hstack((x1_label0, x2_label0)) | |
| xs_label1 = np.hstack((x1_label1, x2_label1)) | |
| xs_label2 = np.hstack((x1_label2, x2_label2)) | |
| xs = np.vstack((xs_label0, xs_label1, xs_label2)) | |
| labels = np.matrix([[1., 0., 0.]] * len(x1_label0) + [[0., 1., 0.]] * len(x1_label1) + [[0., 0., 1.]] * len(x1_label2)) | |
| arr = np.arange(xs.shape[0]) | |
| np.random.shuffle(arr) | |
| xs = xs[arr, :] | |
| labels = labels[arr, :] | |
| test_x1_label0 = np.random.normal(1, 1, (10, 1)) | |
| test_x2_label0 = np.random.normal(1, 1, (10, 1)) | |
| test_x1_label1 = np.random.normal(5, 1, (10, 1)) | |
| test_x2_label1 = np.random.normal(4, 1, (10, 1)) | |
| test_x1_label2 = np.random.normal(8, 1, (10, 1)) | |
| test_x2_label2 = np.random.normal(0, 1, (10, 1)) | |
| test_xs_label0 = np.hstack((test_x1_label0, test_x2_label0)) | |
| test_xs_label1 = np.hstack((test_x1_label1, test_x2_label1)) | |
| test_xs_label2 = np.hstack((test_x1_label2, test_x2_label2)) | |
| test_xs = np.vstack((test_xs_label0, test_xs_label1, test_xs_label2)) | |
| test_labels = np.matrix([[1., 0., 0.]] * 10 + [[0., 1., 0.]] * 10 + [[0., 0., 1.]] * 10) | |
| train_size, num_features = xs.shape | |
| X = tf.placeholder("float", shape=[None, num_features]) | |
| Y = tf.placeholder("float", shape=[None, num_labels]) | |
| W = tf.Variable(tf.zeros([num_features, num_labels])) | |
| b = tf.Variable(tf.zeros([num_labels])) | |
| y_model = tf.nn.softmax(tf.matmul(X, W) + b) | |
| cost = -tf.reduce_sum(Y * tf.log(y_model)) | |
| train_op = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) | |
| correct_prediction = tf.equal(tf.argmax(y_model, 1), tf.argmax(Y, 1)) | |
| accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) | |
| with tf.Session() as sess: | |
| tf.initialize_all_variables().run() | |
| for step in xrange(training_epochs * train_size // batch_size): | |
| offset = (step * batch_size) % train_size | |
| batch_xs = xs[offset:(offset + batch_size), :] | |
| batch_labels = labels[offset:(offset + batch_size)] | |
| err, _ = sess.run([cost, train_op], feed_dict={X: batch_xs, Y: batch_labels}) | |
| print (step, err) | |
| W_val = sess.run(W) | |
| print('w', W_val) | |
| b_val = sess.run(b) | |
| print('b', b_val) | |
| print "accuracy", accuracy.eval(feed_dict={X: test_xs, Y: test_labels}) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment