Created
July 18, 2017 08:57
-
-
Save sj82516/111d13aef679a3d11aa700dd7b89e9ef to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import numpy as np | |
| import tensorflow as tf | |
| from matplotlib import pyplot as plt | |
| # 產生100筆資料 , 此為簡單的線性關係 (加點noise) | |
| x_data = np.linspace(-10.0, 10.0, num=100) | |
| y_data = 3.21 * x_data + 2 + np.random.uniform(-10.0,10.0,100) | |
| # 產生tf的graph | |
| x = tf.placeholder(tf.float32, shape=(None,), name="x") | |
| y = tf.placeholder(tf.float32, shape=(None,), name="y") | |
| W = tf.Variable([3.2]) | |
| b = tf.Variable(np.random.normal(0,1)) | |
| y_pred = W * x + b | |
| loss = tf.reduce_sum(tf.pow(y_pred - y, 2)) | |
| train = tf.train.GradientDescentOptimizer(0.00005).minimize(loss) | |
| init = tf.global_variables_initializer() | |
| with tf.Session() as sess: | |
| sess.run(init) | |
| for _ in range(1000): | |
| loss_val,_ = sess.run([loss,train], feed_dict={x: x_data, y: y_data}) | |
| y_pred_batch,curr_W, curr_b = sess.run([y_pred,W,b], feed_dict={x:x_data}) | |
| print(y_pred_batch,curr_W, curr_b) | |
| plt.figure(1) | |
| plt.scatter(x_data, y_data) | |
| plt.scatter(x_data, y_pred_batch) | |
| plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment