Created
January 31, 2017 09:29
-
-
Save sjain07/98266a854d19e01608fa13d1ae9962e3 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
graph = tf.Graph() | |
with graph.as_default(): | |
train_inputs = tf.placeholder(tf.int32, shape=[batch_size]) | |
train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1]) | |
valid_dataset = tf.constant(valid_examples, dtype=tf.int32) | |
with tf.device('/cpu:0'): | |
embeddings = tf.Variable(tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0)) | |
embed = tf.nn.embedding_lookup(embeddings, train_inputs) | |
nce_weights = tf.Variable(tf.truncated_normal([vocabulary_size, embedding_size], stddev=1.0 / math.sqrt(embedding_size))) | |
nce_biases = tf.Variable(tf.zeros([vocabulary_size])) | |
loss = tf.reduce_mean(tf.nn.nce_loss(nce_weights, nce_biases, embed, train_labels, num_sampled, vocabulary_size)) | |
optimizer = tf.train.GradientDescentOptimizer(1.0).minimize(loss) | |
norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True)) | |
normalized_embeddings = embeddings / norm | |
valid_embeddings = tf.nn.embedding_lookup(normalized_embeddings, valid_dataset) | |
similarity = tf.matmul(valid_embeddings, normalized_embeddings, transpose_b=True) | |
init = tf.global_variables_initializer() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment