Last active
December 15, 2017 19:14
-
-
Save sjmielke/3861cdd085731570214cd09d02a9fe21 to your computer and use it in GitHub Desktop.
SGLD
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import matplotlib.pyplot as plt | |
import numpy as np | |
import torch | |
a = -.1 | |
b = -.3 | |
c = 1.0 | |
d = 1.5 | |
def p(x): | |
return np.exp(a*x**4 + b*x**3 + c*x**2 + d*x - 5.1574089034945) | |
def logp(x): | |
return a*x**4 + b*x**3 + c*x**2 + d*x # - 5.1574089034945 | |
def dlogp(x): | |
# return np.exp(a*x**4 + b*x**3 + c*x**2 + d*x + e) * (4*a*x**3 + 3*b*x**2 + 2*c*x + d) | |
if isinstance(x, int) and x > 2.5: | |
return -1 | |
elif isinstance(x, int) and x < -4: | |
return 1 | |
else: | |
# print(4*a*x**3 + 3*b*x**2 + 2*c*x + d) | |
return 4*a*x**3 + 3*b*x**2 + 2*c*x + d | |
def do_sgld(): | |
xax = plt.subplot(3, 1, 1) | |
plt.xticks([]) | |
plt.yticks([]) | |
changeiter = None | |
changethreshold = 0.01 | |
def getstepsize(i): | |
global changeiter | |
ss = max(0.9 ** i, changethreshold) | |
if changeiter is None and ss == changethreshold: | |
changeiter = i | |
return ss | |
x = -2 | |
xs = [] | |
ys = [] | |
maxiters = 200000 | |
for i in range(maxiters): | |
if i % 10000 == 0: | |
print(i, "/", maxiters, " -> lr =", getstepsize(i)) | |
xs.append(x) | |
ys.append(logp(x)) | |
# plt.plot(xs[-2:], np.clip(ys[-2:], -10, None), 'g-', alpha = 0.01 + 0.05 * float(i) / maxiters) | |
# Pure gradient | |
grad = dlogp(x) | |
grad = max(grad, -5 + np.random.normal(0, 3, 1)[0]) | |
grad = min(grad, 5 + np.random.normal(0, 3, 1)[0]) | |
# Noise it up | |
grad = getstepsize(i) * 0.5 * dlogp(x) | |
noise = np.random.normal(0, np.sqrt(getstepsize(i)), 1)[0] | |
x += grad + noise | |
# Clamp | |
oldx = x | |
x = max(x, -4.5 - 2) | |
x = min(x, 3 + 2) | |
# if np.abs(x - xs[-1]) < 0.0001 and oldx == x: | |
# break | |
plt.axvline(xs[-1]) | |
plt.plot(xs[::50], np.clip(ys[::50], -10, None), 'bo', alpha = 400.0 / maxiters) | |
plt.subplot(3, 1, 2, sharex = xax) | |
plt.xticks([]) | |
plt.yticks([]) | |
ycoords = np.arange(0, len(xs)) / (-.1 * len(xs)) | |
plt.plot(xs, ycoords, 'ko', markersize = .5, alpha = 0.025) | |
plt.axhline(ycoords[changeiter]) | |
plt.subplot(3, 1, 3, sharex = xax) | |
plt.xticks([]) | |
plt.yticks([]) | |
X = np.arange(-4.5, 3, 0.01) | |
plt.plot(X, p(X)) | |
# plt.plot(X, logp(X)) | |
# plt.plot(X, dlogp(X)) | |
# now my binning | |
binsize = 0.15 | |
bins = np.arange(-4.5 - 2, 3 + 2, binsize) | |
counters = np.zeros(len(bins)) | |
counters_burnedin = np.zeros(len(bins)) | |
for i, x in enumerate(xs): | |
where = min((max(min(x, 3 + 2), -4.5 - 2) + 4.5 + 2) / (4.5 + 2 + 3 + 2), 0.9999999) | |
counters[int(where * len(bins))] += getstepsize(i) | |
if i > changeiter: | |
counters_burnedin[int(where * len(bins))] += getstepsize(i) | |
# counters[0] = 0 | |
# counters[-1] = 0 | |
plt.bar(bins, counters / (binsize * sum(counters)), alpha = 0.4, width = binsize, color = 'red') | |
plt.bar(bins, counters_burnedin / (binsize * sum(counters_burnedin)), alpha = 0.4, width = binsize, color = 'green') | |
plt.show() | |
def do_bbb(): | |
torch.manual_seed(42) | |
gaussian_mu = torch.autograd.Variable(torch.Tensor([-1]), requires_grad = True) | |
gaussian_rho = torch.autograd.Variable(torch.Tensor([1.0]), requires_grad = True) # close enough | |
unifgaussian = torch.distributions.Normal(torch.Tensor([0.0]), 1.0) | |
xax = plt.subplot(2, 1, 1) | |
X = np.arange(-4.5, 3, 0.01) | |
plt.plot(X, logp(X)) | |
xs = [] | |
ys = [] | |
maxiters = 1000 | |
for i in range(maxiters): | |
# TODO: torch.distributions.Normal may also do the reparametrization? | |
eps = torch.autograd.Variable(torch.clamp(unifgaussian.sample(), -2, 2), requires_grad = False) | |
w = gaussian_mu + torch.log(1 + torch.exp(gaussian_rho)) * eps | |
xs.append(w.data[0]) | |
ys.append(logp(w.data[0])) | |
plt.plot(xs[-2:], np.clip(ys[-2:], -5, None), 'g-', alpha = 0.01 + 0.05 * float(i) / maxiters) | |
q = torch.distributions.Normal(gaussian_mu, torch.log(1 + torch.exp(gaussian_rho))) | |
log_q = q.log_prob(w) | |
log_p = logp(w) | |
f = log_q - log_p | |
w_grad = [] | |
def set_w_grad(g): | |
w_grad.append(g) | |
w.register_hook(set_w_grad) | |
f.backward() | |
w_grad = w_grad[0] | |
update_mu = w_grad + gaussian_mu.grad | |
update_rho = w_grad * (eps / (1.0 + torch.exp(-gaussian_rho))) + gaussian_rho.grad | |
gaussian_mu.data -= 0.01 * update_mu.data | |
gaussian_rho.data -= 0.01 * update_rho.data | |
if i % 100 == 0: | |
print("Mu: {:6.3f} / Rho: {:6.3f}".format(gaussian_mu.data[0], gaussian_rho.data[0])) | |
for param in [gaussian_mu, gaussian_rho]: | |
param.grad.data.fill_(0) | |
# print(xs) | |
# print(ys) | |
plt.subplot(2, 1, 2, sharex = xax) | |
plt.plot(X, p(X)) | |
X_ = torch.autograd.Variable(torch.from_numpy(X)).type(torch.FloatTensor) | |
plt.plot(X, np.exp(q.log_prob(X_).data.numpy())) | |
plt.show() | |
do_sgld() | |
# do_bbb() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment