Created
July 5, 2015 08:14
-
-
Save sjolsen/021d5c6b83c8566c08e2 to your computer and use it in GitHub Desktop.
Function equality based on parameterizing over Relation.Binary.PropositionalEquality.Extensionality
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module ExtensionalEquality where | |
open import Level | |
open import Relation.Binary | |
open import Relation.Binary.PropositionalEquality | |
open import Function using (_$_; id) | |
infix 4 _≈_ | |
data _≈_ {ℓ} {A : Set ℓ} : Rel A (suc ℓ) where | |
≈-inj : ∀ {x y} → (x~y : ∀ (ext : Extensionality ℓ ℓ) → x ≡ y) → x ≈ y | |
-- _≈_ is an equivalence relation | |
≈-refl : ∀ {ℓ} {A : Set ℓ} → Reflexive (_≈_ {A = A}) | |
≈-refl = ≈-inj (λ _ → refl) | |
≈-sym : ∀ {ℓ} {A : Set ℓ} → Symmetric (_≈_ {A = A}) | |
≈-sym (≈-inj i~j) = ≈-inj $ | |
λ ext → sym (i~j ext) | |
≈-trans : ∀ {ℓ} {A : Set ℓ} → Transitive (_≈_ {A = A}) | |
≈-trans (≈-inj i~j) (≈-inj j~k) = ≈-inj $ | |
λ ext → trans (i~j ext) (j~k ext) | |
≈-isEquivalence : ∀ {ℓ} {A : Set ℓ} → IsEquivalence (_≈_ {A = A}) | |
≈-isEquivalence = record { | |
refl = ≈-refl ; | |
sym = ≈-sym ; | |
trans = ≈-trans | |
} | |
-- Some properties | |
≈-cong : ∀ {a} {A B : Set a} (f : A → B) {x y} | |
→ x ≈ y → f x ≈ f y | |
≈-cong {a} {b} f (≈-inj x~y) = ≈-inj $ | |
λ ext → cong f (x~y (extensionality-for-lower-levels a a ext)) | |
≈-cong-app : ∀ {a b} {A : Set a} {B : A → Set (a ⊔ b)} {f g : (x : A) → B x} | |
→ f ≈ g → (x : A) → f x ≈ g x | |
≈-cong-app (≈-inj f~g) x = ≈-inj $ | |
λ ext → cong-app (f~g ext) x | |
≈-cong₂ : ∀ {a b} {A : Set a} {B : Set b} {C : Set (a ⊔ b)} (f : A → B → C) {x y u v} | |
→ x ≈ y → u ≈ v → f x u ≈ f y v | |
≈-cong₂ {a} {b} {c} f (≈-inj x~y) (≈-inj u~v) = ≈-inj $ | |
λ ext → cong₂ f (x~y (extensionality-for-lower-levels (a ⊔ b) (a ⊔ b) ext)) | |
(u~v (extensionality-for-lower-levels (a ⊔ b) (a ⊔ b) ext)) | |
≈-setoid : ∀ {ℓ} (A : Set ℓ) → Setoid _ _ | |
≈-setoid A = record { | |
Carrier = A ; | |
_≈_ = _≈_ ; | |
isEquivalence = ≈-isEquivalence | |
} | |
≈-decSetoid : ∀ {ℓ} {A : Set ℓ} → Decidable (_≈_ {A = A}) → DecSetoid _ _ | |
≈-decSetoid dec = record { | |
_≈_ = _≈_ ; | |
isDecEquivalence = record { | |
isEquivalence = ≈-isEquivalence ; | |
_≟_ = dec | |
} | |
} | |
≈-isPreorder : ∀ {ℓ} {A : Set ℓ} → IsPreorder {A = A} _≈_ _≈_ | |
≈-isPreorder = record { | |
isEquivalence = ≈-isEquivalence ; | |
reflexive = id ; | |
trans = ≈-trans | |
} | |
≈-preorder : ∀ {a} → Set a → Preorder _ _ _ | |
≈-preorder A = record { | |
Carrier = A ; | |
_≈_ = _≈_ ; | |
_∼_ = _≈_ ; | |
isPreorder = ≈-isPreorder | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment