Last active
August 29, 2015 14:25
-
-
Save sjolsen/23ba4da7dbf386a8f386 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module Bradley where | |
open import Data.Nat | |
open import Relation.Nullary | |
open import Relation.Nullary.Negation | |
open import Relation.Nullary.Decidable | |
open import Relation.Binary | |
open import Relation.Binary.PropositionalEquality | |
open import Function | |
open ≡-Reasoning | |
open import Data.Nat.Properties.Simple | |
_<?_ : Decidable _<_ | |
m <? n = suc m ≤? n | |
data DivMod (m n : ℕ) {_ : False (n ≟ 0)} : Set where | |
quotrem : ∀ (q r : ℕ) → r < n → m ≡ q * n + r → DivMod m n | |
xrefl : ∀ {ℓ} {A : Set ℓ} (x : A) → x ≡ x | |
xrefl x = refl | |
≤→≮→≡ : ∀ {a b} → a ≤ b → a ≮ b → a ≡ b | |
≤→≮→≡ {zero} {zero} _ _ = refl | |
≤→≮→≡ {zero} {suc _} _ q = contradiction (s≤s z≤n) q | |
≤→≮→≡ {suc _} {zero} () | |
≤→≮→≡ {suc a} {suc b} (s≤s p) q = cong suc (≤→≮→≡ p (q ∘ s≤s)) | |
divMod : ∀ (m n : ℕ) {nz : False (n ≟ 0)} → DivMod m n {nz} | |
divMod _ zero {} | |
divMod zero (suc n-1) = quotrem 0 zero (s≤s z≤n) refl | |
divMod (suc m-1) (suc n-1) with divMod m-1 (suc n-1) | |
... | quotrem q r lt eq with r <? n-1 | |
... | yes x = quotrem q (suc r) (s≤s x) $ begin | |
suc m-1 | |
≡⟨ cong suc eq ⟩ | |
suc (q * suc n-1 + r) | |
≡⟨ sym (+-suc (q * suc n-1) r) ⟩ | |
q * suc n-1 + suc r ∎ | |
... | no ¬x = quotrem (suc q) 0 (s≤s z≤n) $ cong suc $ begin | |
m-1 | |
≡⟨ eq ⟩ | |
q * suc n-1 + r | |
≡⟨ cong₂ _+_ (xrefl (q * suc n-1)) (≤→≮→≡ (≤-pred lt) ¬x) ⟩ | |
q * suc n-1 + n-1 | |
≡⟨ +-comm (q * suc n-1) n-1 ⟩ | |
n-1 + q * suc n-1 | |
≡⟨ +-comm 0 (n-1 + q * suc n-1) ⟩ | |
n-1 + q * suc n-1 + 0 ∎ |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment