Created
April 4, 2016 07:31
-
-
Save sjolsen/2f88e182bda81b3f3a2c54e64751ff8f to your computer and use it in GitHub Desktop.
Enough STLC to implement single-step η-reduction
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
open import Level using () renaming (suc to lsuc) | |
open import Data.Empty | |
open import Data.Nat hiding (compare) | |
open import Data.Nat.Properties | |
open import Data.Product | |
open import Data.Sum | |
open import Data.Vec | |
open import Function | |
open import Relation.Nullary | |
open import Relation.Nullary.Negation | |
open import Relation.Binary | |
open import Relation.Binary.PropositionalEquality hiding ([_]) | |
open StrictTotalOrder strictTotalOrder using (compare) | |
module Types2 {ℓ Cᵤ} (U : Vec (Set ℓ) Cᵤ) where | |
module Helper where | |
Fin : ℕ → Set | |
Fin n = Σ[ m ∈ ℕ ] m < n | |
fsuc : ∀ {n} → Fin n → Fin (suc n) | |
fsuc (m , m<n) = (suc m) , (s≤s m<n) | |
_at_ : ∀ {a} {A : Set a} {n} → Vec A n → Fin n → A | |
[] at (i , ()) | |
(x₀ ∷ xₛ) at (zero , i<n) = x₀ | |
(x₀ ∷ xₛ) at (suc i-1 , s≤s i-1<n-1) = xₛ at (i-1 , i-1<n-1) | |
remove : ∀ {a} {A : Set a} {n} → (i : Fin (suc n)) → (v : Vec A (suc n)) → Vec A n | |
remove (zero , _) (v₀ ∷ vₛ) = vₛ | |
remove {n = zero} (suc i-1 , s≤s ()) (v₀ ∷ vₛ) | |
remove {n = suc n-1} (suc i-1 , s≤s i-1<n) (v₀ ∷ vₛ) = v₀ ∷ remove (i-1 , i-1<n) vₛ | |
remove-at< : ∀ {a} {A : Set a} {n} i j i<n+1 j<n+1 j<n | |
→ (v : Vec A (suc n)) → j < i | |
→ remove (i , i<n+1) v at (j , j<n) ≡ v at (j , j<n+1) | |
remove-at< zero j i<n+1 j<n+1 j<n (v₀ ∷ vₛ) () | |
remove-at< {n = zero} (suc i-1) j i<n+1 j<n+1 () (v₀ ∷ vₛ) j<i | |
remove-at< {n = suc n-1} (suc i-1) zero (s≤s i-1<n) j<n+1 j<n (v₀ ∷ vₛ) j<i = refl | |
remove-at< {n = suc n-1} (suc i-1) (suc j-1) (s≤s i-1<n) (s≤s j-1<n) (s≤s j-1<n-1) (v₀ ∷ vₛ) (s≤s j-1<i-1) = remove-at< i-1 j-1 i-1<n j-1<n j-1<n-1 vₛ j-1<i-1 | |
≤-irrel : ∀ {m n} (p q : m ≤ n) → p ≡ q | |
≤-irrel {m = zero} z≤n z≤n = refl | |
≤-irrel {m = suc _} {n = zero} () () | |
≤-irrel {m = suc _} {n = suc _} (s≤s p) (s≤s q) = cong s≤s (≤-irrel p q) | |
<-irrel : ∀ {m n} (p q : m < n) → p ≡ q | |
<-irrel = ≤-irrel | |
remove-at> : ∀ {a} {A : Set a} {n} i j i<n+1 j+1<n+1 j<n | |
→ (v : Vec A (suc n)) → suc j > i | |
→ remove (i , i<n+1) v at (j , j<n) ≡ v at (suc j , j+1<n+1) | |
remove-at> zero j i<n+1 (s≤s j<n′) j<n (v₀ ∷ vₛ) j+1>i = cong (λ j<n₁ → vₛ at (j , j<n₁)) (<-irrel j<n j<n′) | |
remove-at> {n = zero} (suc i-1) j (s≤s ()) j+1<n+1 j<n (v₀ ∷ vₛ) j+1>i | |
remove-at> {n = suc n} (suc i-1) zero (s≤s i-1<n) j+1<n+1 j<n (v₀ ∷ vₛ) (s≤s ()) | |
remove-at> {n = suc n} (suc i-1) (suc j-1) (s≤s i-1<n) (s≤s j<n) (s≤s j-1<n-1) (v₀ ∷ vₛ) (s≤s j>i-1) = remove-at> i-1 j-1 i-1<n j<n j-1<n-1 vₛ j>i-1 | |
coerce : ∀ {ℓ} {A B : Set ℓ} → A ≡ B → A → B | |
coerce refl x = x | |
a<b<c+1 : ∀ {a b c} → a < b → b < suc c → a < c | |
a<b<c+1 {a} {b} {c} a<b (s≤s b-1<c) = ≤-trans a<b b-1<c | |
where open DecTotalOrder decTotalOrder using () renaming (trans to ≤-trans) | |
deMorgan : ∀ {p q} {P : Set p} {Q : Set q} → ¬ (P ⊎ Q) → (¬ P) × (¬ Q) | |
deMorgan ¬[p∨q] = (¬[p∨q] ∘ inj₁) , (¬[p∨q] ∘ inj₂) | |
decSum : ∀ {p q} {P : Set p} {Q : Set q} → Dec P → Dec Q → Dec (P ⊎ Q) | |
decSum (yes p) _ = yes (inj₁ p) | |
decSum _ (yes q) = yes (inj₂ q) | |
decSum (no ¬p) (no ¬q) = no $ λ | |
{ (inj₁ p) → contradiction p ¬p | |
; (inj₂ q) → contradiction q ¬q | |
} | |
open Helper | |
infixr 0 _⟶_ | |
data Type : Set (lsuc ℓ) where | |
Prim : Fin Cᵤ → Type | |
_⟶_ : Type → Type → Type | |
data Expr {n} (Γ : Vec Type n) : Type → Set (lsuc ℓ) where | |
Lit : ∀ t → (x : U at t) → Expr Γ (Prim t) | |
Var : ∀ v → Expr Γ (Γ at v) | |
App : ∀ {τ τ′} → (f : Expr Γ (τ ⟶ τ′)) → (x : Expr Γ τ) → Expr Γ τ′ | |
Lam : ∀ {τ τ′} → (b : Expr (τ ∷ Γ) τ′) → Expr Γ (τ ⟶ τ′) | |
_appears-free-in_ : ∀ {n τ} {Γ : Vec Type n} → (v : Fin n) → (e : Expr Γ τ) → Set | |
v appears-free-in Lit t x = ⊥ | |
v appears-free-in Var v′ = proj₁ v ≡ proj₁ v′ | |
v appears-free-in App e e′ = (v appears-free-in e) ⊎ (v appears-free-in e′) | |
v appears-free-in Lam e = fsuc v appears-free-in e | |
_appears-free-in?_ : ∀ {n τ} {Γ : Vec Type n} → Decidable (_appears-free-in_ {n} {τ} {Γ}) | |
v appears-free-in? Lit t x = no (λ ()) | |
v appears-free-in? Var v′ = proj₁ v ≟ proj₁ v′ | |
v appears-free-in? App e e′ = decSum (v appears-free-in? e) (v appears-free-in? e′) | |
v appears-free-in? Lam e = fsuc v appears-free-in? e | |
delvar : ∀ {n τ} {Γ : Vec Type (suc n)} → (v : Fin (suc n)) → (e : Expr Γ τ) | |
→ ¬ (v appears-free-in e) → Expr (remove v Γ) τ | |
delvar v (Lit t x) p = Lit t x | |
delvar {Γ = Γ} (v , v<n+1) (Var (v′ , v′<n+1)) p with compare v′ v | |
... | tri< v′<v v′≠v v′≯v = coerce (cong (Expr _) (remove-at< v v′ v<n+1 v′<n+1 v′<n Γ v′<v)) (Var (v′ , v′<n)) | |
where v′<n = a<b<c+1 v′<v v<n+1 | |
... | tri≈ v′≮v v′=v v′≯v = contradiction (sym v′=v) p | |
... | tri> v′≮v v′≠v v′>v with v′ | v′<n+1 | |
... | zero | _ = contradiction v′>v (λ ()) | |
... | suc v′-1 | s≤s v′-1<n = coerce (cong (Expr _) (remove-at> v v′-1 v<n+1 (s≤s v′-1<n) v′-1<n Γ v′>v)) (Var (v′-1 , v′-1<n)) | |
delvar v (App e e′) p = App (delvar v e (proj₁ (deMorgan p))) (delvar v e′ (proj₂ (deMorgan p))) | |
delvar v (Lam e) p = Lam (delvar (fsuc v) e p) | |
-- λ x → f x => f | |
η-reduce : ∀ {n τ} {Γ : Vec Type n} → Expr Γ τ → Expr Γ τ | |
η-reduce (Lam (App e (Var (0 , 0<n+1)))) with (0 , 0<n+1) appears-free-in? e | |
... | no ¬p = delvar (0 , 0<n+1) e ¬p | |
... | yes p = Lam (App e (Var (0 , 0<n+1))) | |
η-reduce other = other | |
private | |
λx→fx : ∀ α β → Expr [ α ⟶ β ] (α ⟶ β) | |
λx→fx α β = Lam (App (Var (1 , s≤s (s≤s z≤n))) (Var (0 , (s≤s z≤n)))) | |
η-test : ∀ α β → η-reduce (λx→fx α β) ≡ Var (0 , s≤s z≤n) | |
η-test α β = refl |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment