Created
October 25, 2020 01:40
-
-
Save sjtalkar/75b33540fdff9e114fb58577e1bf2b15 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
import datetime | |
# The historical data setup | |
assets = ['Automobiles', 'Building'] * 2 | |
countries = ['Andorra', 'Andorra', 'Brunei', 'Brunei'] | |
rates = [12.5, 4.5, 14.0, 6.5] | |
effective_from = ['2019-01-01'] * 4 | |
effective_until = [None] * 4 | |
depreciation_rate_df = pd.DataFrame(list(zip(assets, countries, rates, effective_from, effective_until)), | |
columns= ['asset', 'country','rate', 'effective_from', 'effective_until']) | |
# New rate change data | |
assets = ['Automobiles', 'Building'] * 2 | |
countries = ['Andorra', 'Andorra', 'Brunei', 'Brunei'] | |
rates = [15, 5, 13, 7] | |
effective_from = ['2020-01-01'] * 2 + ['2020-01-03'] * 2 | |
effective_until = [None] * 4 | |
# Add the new data to historical data | |
new_depreciation_rate_df = pd.DataFrame(list(zip(assets, countries, rates, effective_from, effective_until)), | |
columns= ['asset', 'country','rate', 'effective_from', 'effective_until']) | |
depreciation_rate_df = depreciation_rate_df.append(new_depreciation_rate_df, ignore_index=True) | |
#Change the type of the date column from Object to datetime64 | |
depreciation_rate_df['effective_from']= depreciation_rate_df['effective_from'].astype('datetime64') | |
depreciation_rate_df['effective_until'] = depreciation_rate_df.groupby(['country', 'asset'])['effective_from'].shift(-1) | |
depreciation_rate_df['effective_until'] = depreciation_rate_df['effective_until'].apply(lambda x: x-datetime.timedelta(seconds=1) if ~pd.isnull(x) else None) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment