Last active
August 29, 2015 14:22
-
-
Save skaae/6172ddeb14605d9bbb25 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import scipy.io | |
import lasagne | |
import theano | |
import theano.tensor as T | |
import numpy as np | |
import time | |
import logging | |
logger = logging.getLogger('') | |
logger.setLevel(logging.DEBUG) | |
fh = logging.FileHandler('experiment.log') | |
fh.setLevel(logging.DEBUG) | |
ch = logging.StreamHandler() | |
ch.setLevel(logging.DEBUG) | |
formatter = logging.Formatter('%(message)s') | |
ch.setFormatter(formatter) | |
fh.setFormatter(formatter) | |
logger.addHandler(ch) | |
logger.addHandler(fh) | |
TRAIN_NC = '../data/train_1_speaker.nc' | |
VAL_NC = '../data/val_1_speaker.nc' | |
BATCH_SIZE = 50 | |
def one_hot(labels, n_classes): | |
''' | |
Converts an array of label integers to a one-hot matrix encoding | |
:parameters: | |
- labels : np.ndarray, dtype=int | |
Array of integer labels, in {0, n_classes - 1} | |
- n_classes : int | |
Total number of classes | |
:returns: | |
- one_hot : np.ndarray, dtype=bool, shape=(labels.shape[0], n_classes) | |
One-hot matrix of the input | |
''' | |
one_hot = np.zeros((labels.shape[0], n_classes)).astype(bool) | |
one_hot[range(labels.shape[0]), labels] = True | |
return one_hot | |
def load_netcdf(filename): | |
''' | |
Loads in data from a netcdf file in rnnlib format | |
:parameters: | |
- filename : str | |
Path to a netcdf file | |
:returns: | |
- X : list of np.ndarray | |
List of time series matrices | |
- y : list of np.ndarray | |
List of label arrays in one-hot form (see one_hot) | |
''' | |
with open(filename, 'r') as f: | |
netcdf_data = scipy.io.netcdf_file(f).variables | |
X = [] | |
y = [] | |
n = 0 | |
for length in netcdf_data['seqLengths'].data: | |
X_n = netcdf_data['inputs'].data[n:n + length] | |
X.append(X_n.astype(theano.config.floatX)) | |
y_n = one_hot(netcdf_data['targetClasses'].data[n:n + length], | |
netcdf_data['numTargetClasses'].data) | |
y.append(y_n.astype(theano.config.floatX)) | |
n += length | |
return X, y | |
def make_batches(X, length, batch_size=BATCH_SIZE): | |
''' | |
Convert a list of matrices into batches of uniform length | |
:parameters: | |
- X : list of np.ndarray | |
List of matrices | |
- length : int | |
Desired sequence length. Smaller sequences will be padded with 0s, | |
longer will be truncated. | |
- batch_size : int | |
Mini-batch size | |
:returns: | |
- X_batch : np.ndarray | |
Tensor of time series matrix batches, | |
shape=(n_batches, batch_size, length, n_features) | |
- X_mask : np.ndarray | |
Mask denoting whether to include each time step of each time series | |
matrix | |
''' | |
n_batches = len(X)//batch_size | |
X_batch = np.zeros((n_batches, batch_size, length, X[0].shape[1]), | |
dtype=theano.config.floatX) | |
X_mask = np.zeros(X_batch.shape, dtype=np.bool) | |
for b in range(n_batches): | |
for n in range(batch_size): | |
X_m = X[b*batch_size + n] | |
X_batch[b, n, :X_m.shape[0]] = X_m[:length] | |
X_mask[b, n, :X_m.shape[0]] = 1 | |
return X_batch, X_mask | |
logger.info('Loading data...') | |
X_train, y_train = load_netcdf(TRAIN_NC) | |
X_train = X_train | |
y_train = y_train | |
X_val, y_val = load_netcdf(VAL_NC) | |
X_val = X_val | |
y_val = y_val | |
print X_train[0].shape | |
# Find the longest sequence | |
length = max(max([X.shape[0] for X in X_train]), | |
max([X.shape[0] for X in X_val])) | |
# Convert to batches of time series of uniform length | |
X_train, _ = make_batches(X_train, length) | |
y_train, train_mask = make_batches(y_train, length) | |
X_val, _ = make_batches(X_val, length) | |
y_val, val_mask = make_batches(y_val, length) | |
n_epochs = 500 | |
learning_rate = 10 | |
momentum = .9 | |
precompute = False | |
l_in = lasagne.layers.InputLayer(shape=(BATCH_SIZE, length, X_val.shape[-1])) | |
l_noise = lasagne.layers.GaussianNoiseLayer(l_in, sigma=0.6) | |
l_forward_1 = lasagne.layers.LSTMLayer(l_noise, num_units=156, backwards=False, precompute_input=precompute) | |
l_backward_1 = lasagne.layers.LSTMLayer(l_noise, num_units=156, backwards=True, precompute_input=precompute) | |
l_recurrent_1 = lasagne.layers.ElemwiseSumLayer( | |
[l_forward_1, l_backward_1]) | |
l_forward_2 = lasagne.layers.LSTMLayer( | |
l_recurrent_1, num_units=300, backwards=False, precompute_input=precompute) | |
l_backward_2 = lasagne.layers.LSTMLayer( | |
l_recurrent_1, num_units=300, backwards=True, precompute_input=precompute) | |
l_recurrent_2 = lasagne.layers.ElemwiseSumLayer( | |
[l_forward_2, l_backward_2]) | |
l_forward_3 = lasagne.layers.LSTMLayer( | |
l_recurrent_2, num_units=102, backwards=False, precompute_input=precompute) | |
l_backward_3 = lasagne.layers.LSTMLayer( | |
l_recurrent_2, num_units=102, backwards=False, precompute_input=precompute) | |
l_recurrent_3 = lasagne.layers.ElemwiseSumLayer( | |
[l_forward_3, l_backward_3]) | |
l_reshape = lasagne.layers.ReshapeLayer(l_recurrent_3, (-1, 102)) | |
nonlinearity = lasagne.nonlinearities.softmax | |
l_rec_out = lasagne.layers.DenseLayer(l_reshape, num_units=y_val.shape[-1], | |
nonlinearity=nonlinearity) | |
l_out = lasagne.layers.ReshapeLayer(l_rec_out, | |
(BATCH_SIZE, length, y_val.shape[-1])) | |
# Cost function is mean squared error | |
input = T.tensor3('input') | |
target_output = T.tensor3('target_output') | |
mask = T.tensor3('mask') | |
def cost(output): | |
return -T.sum(mask*target_output*T.log(output))/T.sum(mask) | |
cost_train = cost(lasagne.layers.get_output(l_out, input, deterministic=False)) | |
cost_eval = cost(lasagne.layers.get_output(l_out, input, deterministic=True)) | |
# Use SGD for training | |
all_params = lasagne.layers.get_all_params(l_out, trainable=True) | |
logger.info('Computing updates...') | |
updates = lasagne.updates.momentum(cost_train, all_params, | |
learning_rate, momentum) | |
logger.info('Compiling functions...') | |
# Theano functions for training, getting output, and computing cost | |
train = theano.function([input, target_output, mask], cost_train, | |
updates=updates) | |
y_pred = theano.function([input], lasagne.layers.get_output(l_out, input, deterministic=True)) | |
compute_cost = theano.function([input, target_output, mask], cost_eval) | |
logger.info('Training...') | |
# Train the net | |
for epoch in range(n_epochs): | |
batch_shuffle = np.random.choice(X_train.shape[0], X_train.shape[0], False) | |
for sequences, labels, sequence_mask in zip(X_train[batch_shuffle], | |
y_train[batch_shuffle], | |
train_mask[batch_shuffle]): | |
start_time = time.time() | |
sequence_shuffle = np.random.choice(sequences.shape[0], | |
sequences.shape[0], False) | |
train(sequences[sequence_shuffle], labels[sequence_shuffle], | |
sequence_mask[sequence_shuffle]) | |
end_time = time.time() | |
print end_time - start_time | |
cost_val = sum([compute_cost(X_val_n, y_val_n, mask_n) | |
for X_val_n, y_val_n, mask_n, | |
in zip(X_val, y_val, val_mask)]) | |
y_val_pred = np.array([y_pred(X_val_n) for X_val_n in X_val]) | |
y_val_labels = np.argmax(y_val*val_mask, axis=-1).flatten() | |
y_val_pred_labels = np.argmax(y_val_pred*val_mask, axis=-1).flatten() | |
n_time_steps = np.sum(val_mask)/val_mask.shape[-1] | |
error = np.sum(y_val_labels != y_val_pred_labels)/float(n_time_steps) | |
logger.info("Epoch {} took {}, cost = {}, error = {}".format( | |
epoch, end_time - start_time, cost_val, error)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment