Skip to content

Instantly share code, notes, and snippets.

@skaslev
Forked from kim-em/universes-problem.lean
Last active February 3, 2017 08:16
Show Gist options
  • Save skaslev/142dc2bfb3a9c6503726d61e716003a1 to your computer and use it in GitHub Desktop.
Save skaslev/142dc2bfb3a9c6503726d61e716003a1 to your computer and use it in GitHub Desktop.
universe variables u v u1 u2 v1 v2
set_option pp.universes true
open smt_tactic
meta def blast : tactic unit := using_smt $ intros >> add_lemmas_from_facts >> repeat_at_most 3 ematch
notation `♮` := by blast
structure semigroup_morphism { α β : Type u } ( s : semigroup α ) ( t: semigroup β ) :=
(map: α → β)
(multiplicative : ∀ x y : α, map(x * y) = map(x) * map(y))
attribute [simp] semigroup_morphism.multiplicative
instance semigroup_morphism_to_map { α β : Type u } { s : semigroup α } { t: semigroup β } : has_coe_to_fun (semigroup_morphism s t) :=
{
F := λ f, Π x : α, β,
coe := semigroup_morphism.map
}
@[reducible] definition semigroup_identity { α : Type u } ( s: semigroup α ) : semigroup_morphism s s := ⟨ id, ♮ ⟩
@[reducible] definition semigroup_morphism_composition
{ α β γ : Type u } { s: semigroup α } { t: semigroup β } { u: semigroup γ}
( f: semigroup_morphism s t ) ( g: semigroup_morphism t u ) : semigroup_morphism s u :=
{
map := λ x, g (f x),
multiplicative := begin blast, simp end
}
@[reducible] definition semigroup_product { α β : Type u } ( s : semigroup α ) ( t: semigroup β ) : semigroup (α × β) := {
mul := λ p q, (p^.fst * q^.fst, p^.snd * q^.snd),
mul_assoc :=
begin
intros,
simp [@mul.equations._eqn_1 (α × β)],
dsimp,
simp
end
}
definition semigroup_morphism_product
{ α β γ δ : Type u }
{ s_f : semigroup α } { s_g: semigroup β } { t_f : semigroup γ } { t_g: semigroup δ }
( f : semigroup_morphism s_f t_f ) ( g : semigroup_morphism s_g t_g )
: semigroup_morphism (semigroup_product s_f s_g) (semigroup_product t_f t_g) := {
map := λ p, (f p.1, g p.2),
multiplicative :=
begin
-- cf https://groups.google.com/d/msg/lean-user/bVs5FdjClp4/tfHiVjLIBAAJ
intros,
unfold mul has_mul.mul,
dsimp,
simp
end
}
structure Category :=
(Obj : Type u)
(Hom : Obj → Obj → Type v)
structure Functor (C : Category.{ u1 v1 }) (D : Category.{ u2 v2 }) :=
(onObjects : C^.Obj → D^.Obj)
(onMorphisms : Π { X Y : C^.Obj },
C^.Hom X Y → D^.Hom (onObjects X) (onObjects Y))
@[reducible] definition ProductCategory (C : Category) (D : Category) :
Category :=
{
Obj := C^.Obj × D^.Obj,
Hom := (λ X Y : C^.Obj × D^.Obj, C^.Hom (X^.fst) (Y^.fst) × D^.Hom (X^.snd) (Y^.snd))
}
namespace ProductCategory
notation C `×` D := ProductCategory C D
end ProductCategory
structure PreMonoidalCategory extends carrier : Category :=
(tensor : Functor (carrier × carrier) carrier)
definition CategoryOfSemigroups : Category :=
{
Obj := Σ α : Type u, semigroup α,
Hom := λ s t, semigroup_morphism s.2 t.2
}
/-
definition PreMonoidalCategoryOfSemigroups : PreMonoidalCategory := {
CategoryOfSemigroups with
tensor := {
onObjects := λ p, sigma.mk (p.1.1 × p.2.1) (semigroup_product p.1.2 p.2.2),
onMorphisms := λ s t f, semigroup_morphism_product f.1 f.2
}
}
-/
set_option pp.implicit true
definition PreMonoidalCategoryOfSemigroups : PreMonoidalCategory := {
CategoryOfSemigroups.{u} with
tensor := {
onObjects := λ p, sigma.mk (p.1.1 × p.2.1) (semigroup_product p.1.2 p.2.2),
onMorphisms := λ s t f, semigroup_morphism_product f.1 f.2
/-
onMorphisms := λ s t f,
begin
-- Cleanup hypotheses using dsimp.
dsimp [CategoryOfSemigroups] at s, dsimp [CategoryOfSemigroups] at t, dsimp [CategoryOfSemigroups] at f,
-- Use pose to elaborate subterms as a sanity checking step, and inspect their types.
pose f₂ := f.2,
pose f₁ := f.1,
/- Try proof
Before fixing the bug at line 41, the error message here would be of the form
error: type mismatch at application
@semigroup_morphism_product.{?l_1} ?m_2 ?m_5 ?m_6 ?m_7 ?m_3 ?m_8 ?m_4 ?m_9 f₁
term
f₁
has type
@semigroup_morphism.{u} ...
but is expected to have type
@semigroup_morphism.{?l_1} ?m_2 ?m_2 ?m_3 ?m_4
The two ?m_2 was a red flag for me.
-/
exact semigroup_morphism_product f₁ f₂
end
-/
}
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment