Last active
October 16, 2017 18:32
-
-
Save skaslev/401818e1c2dad0bb74c00c09a3a0de89 to your computer and use it in GitHub Desktop.
Function iteration and balanced trees
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
-- f(x) = x + f(g(x)) ↔ f(x) = Σ n:ℕ, gⁿ(x) | |
inductive F (g : Type → Type) : Type → Type 1 | |
| F0 : Π {α}, α → F α | |
| F1 : Π {α}, F (g α) → F α | |
-- g(x) = x + x g(x) ↔ g(x) = x/(1-x) ↔ gⁿ(x) = x/(1-nx) | |
inductive G α : Type | |
| G0 : α → G | |
| G1 : α → G → G | |
def iter {α} (g : α → α) : ℕ → α → α | |
| nat.zero := id | |
| (nat.succ n) := iter n ∘ g | |
def diter {β : Type → Type 1} {γ : Type → Type} (g : Π {α}, β (γ α) → β α) : Π (n : ℕ) {α}, β (iter γ n α) → β α | |
| nat.zero α := id | |
| (nat.succ n) α := g ∘ diter n | |
-- s(x) = Σ n:ℕ, gⁿ(x) | |
def S g α := Σ n : ℕ, iter g n α | |
-- f(x) = s(x) | |
def from_s {g α} (x : S g α) : F g α := | |
diter (@F.F1 g) x.1 (F.F0 g x.2) | |
def to_s {g α} (x : F g α) : S g α := | |
F.rec (λ α a, ⟨0, a⟩) (λ α a ih, ⟨nat.succ ih.1, ih.2⟩) x | |
attribute [simp] function.comp | |
def to_s_from_s {g α} (x : S g α) : to_s (from_s x) = x := | |
begin | |
simp [to_s, from_s], | |
induction x with n x, | |
induction n with m ih generalizing α, | |
{ dsimp [diter], refl }, | |
{ dsimp [diter], rw ih x } | |
end | |
def from_s_to_s {g α} (x : F g α) : from_s (to_s x) = x := | |
begin | |
simp [to_s, from_s], | |
induction x with β x β x ih, | |
{ dsimp [diter], refl }, | |
{ dsimp [diter], rw ih } | |
end | |
structure {u v} iso (α : Type u) (β : Type v) := | |
(f : α → β) (g : β → α) (gf : Π x, g (f x) = x) (fg : Π x, f (g x) = x) | |
def sf_iso {g α} : iso (S g α) (F g α) := | |
⟨from_s, to_s, to_s_from_s, from_s_to_s⟩ |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment