Created
October 11, 2018 11:49
-
-
Save skipperkongen/acdc90a4eb4ea91fb6128805820fbd02 to your computer and use it in GitHub Desktop.
Convert video frames to features
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Create X, y series | |
import cv2 | |
import numpy as np | |
from keras.preprocessing import image | |
from keras.applications.vgg16 import VGG16 | |
from keras.applications.vgg16 import preprocess_input | |
class VGGFramePreprocessor(): | |
def __init__(self, vgg_model): | |
self.vgg_model = vgg_model | |
def process(self, frame): | |
img_data = cv2.resize(frame,(224,224)) | |
img_data = np.expand_dims(img_data, axis=0) | |
img_data = preprocess_input(img_data) | |
x = self.vgg_model.predict(img_data).flatten() | |
x = np.expand_dims(x, axis=0) | |
return x | |
def get_video_frames(video_path): | |
vidcap = cv2.VideoCapture(video_path) | |
success, frame = vidcap.read() | |
while success: | |
yield frame | |
success,frame = vidcap.read() | |
vidcap.release() | |
frame_preprocessor = VGGFramePreprocessor(VGG16(weights='imagenet', include_top=False)) | |
# Load movies and transform frames to features | |
movies = [] | |
X = [] | |
y = [] | |
for video_path in glob.glob('data/*.avi'): | |
print('preprocessing', video_path) | |
positive = CLASSES[POS_IDX] in video_path | |
_X = np.concatenate([frame_preprocessor.process(frame) for frame in get_video_frames(video_path)]) | |
_y = np.array(_X.shape[0] * [[int(not positive), int(positive)]]) | |
X.append(_X) | |
y.append(_y) | |
X = np.concatenate(X) | |
y = np.concatenate(y) | |
print(X.shape) | |
print(y.shape) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment