-
-
Save skjerns/bc660ef59dca0dbd53f00ed38c42f6be to your computer and use it in GitHub Desktop.
# -*- coding: utf-8 -*- | |
""" | |
Created on Wed Dec 5 12:56:31 2018 | |
@author: skjerns | |
Gist to save a mne.io.Raw object to an EDF file using pyEDFlib | |
(https://github.com/holgern/pyedflib) | |
Disclaimer: | |
- Saving your data this way will result in slight | |
loss of precision (magnitude +-1e-09). | |
- It is assumed that the data is presented in Volt (V), | |
it will be internally converted to microvolt | |
- BDF or EDF+ is selected based on the filename extension | |
- Annotations preserved | |
Update: Since 2021, MNE also supports exporting EDF via edfio: | |
https://mne.tools/stable/generated/mne.export.export_raw.html | |
""" | |
import pyedflib # pip install pyedflib | |
from pyedflib import highlevel # new high-level interface | |
from pyedflib import FILETYPE_BDF, FILETYPE_BDFPLUS, FILETYPE_EDF, FILETYPE_EDFPLUS | |
from datetime import datetime, timezone, timedelta | |
import mne | |
import os | |
def _stamp_to_dt(utc_stamp): | |
"""Convert timestamp to datetime object in Windows-friendly way.""" | |
if 'datetime' in str(type(utc_stamp)): return utc_stamp | |
# The min on windows is 86400 | |
stamp = [int(s) for s in utc_stamp] | |
if len(stamp) == 1: # In case there is no microseconds information | |
stamp.append(0) | |
return (datetime.fromtimestamp(0, tz=timezone.utc) + | |
timedelta(0, stamp[0], stamp[1])) # day, sec, μs | |
def write_mne_edf(mne_raw, fname, picks=None, tmin=0, tmax=None, | |
overwrite=False): | |
""" | |
Saves the raw content of an MNE.io.Raw and its subclasses to | |
a file using the EDF+/BDF filetype | |
pyEDFlib is used to save the raw contents of the RawArray to disk | |
Parameters | |
update 2021: edf export is now also supported in MNE: | |
https://mne.tools/stable/generated/mne.export.export_raw.html | |
---------- | |
mne_raw : mne.io.Raw | |
An object with super class mne.io.Raw that contains the data | |
to save | |
fname : string | |
File name of the new dataset. This has to be a new filename | |
unless data have been preloaded. Filenames should end with .edf | |
picks : array-like of int | None | |
Indices of channels to include. If None all channels are kept. | |
tmin : float | None | |
Time in seconds of first sample to save. If None first sample | |
is used. | |
tmax : float | None | |
Time in seconds of last sample to save. If None last sample | |
is used. | |
overwrite : bool | |
If True, the destination file (if it exists) will be overwritten. | |
If False (default), an error will be raised if the file exists. | |
""" | |
print('did you know EDF export is now supported in MNE via edfio? have a look at https://mne.tools/stable/generated/mne.export.export_raw.html') | |
if not issubclass(type(mne_raw), mne.io.BaseRaw): | |
raise TypeError('Must be mne.io.Raw type') | |
if not overwrite and os.path.exists(fname): | |
raise OSError('File already exists. No overwrite.') | |
# static settings | |
has_annotations = True if len(mne_raw.annotations)>0 else False | |
if os.path.splitext(fname)[-1] == '.edf': | |
file_type = FILETYPE_EDFPLUS if has_annotations else FILETYPE_EDF | |
dmin, dmax = -32768, 32767 | |
else: | |
file_type = FILETYPE_BDFPLUS if has_annotations else FILETYPE_BDF | |
dmin, dmax = -8388608, 8388607 | |
print('saving to {}, filetype {}'.format(fname, file_type)) | |
sfreq = mne_raw.info['sfreq'] | |
date = _stamp_to_dt(mne_raw.info['meas_date']) | |
if tmin: | |
date += timedelta(seconds=tmin) | |
# no conversion necessary, as pyedflib can handle datetime. | |
#date = date.strftime('%d %b %Y %H:%M:%S') | |
first_sample = int(sfreq*tmin) | |
last_sample = int(sfreq*tmax) if tmax is not None else None | |
# convert data | |
channels = mne_raw.get_data(picks, | |
start = first_sample, | |
stop = last_sample) | |
# convert to microvolts to scale up precision | |
channels *= 1e6 | |
# set conversion parameters | |
n_channels = len(channels) | |
# create channel from this | |
try: | |
f = pyedflib.EdfWriter(fname, | |
n_channels=n_channels, | |
file_type=file_type) | |
channel_info = [] | |
ch_idx = range(n_channels) if picks is None else picks | |
keys = list(mne_raw._orig_units.keys()) | |
for i in ch_idx: | |
try: | |
ch_dict = {'label': mne_raw.ch_names[i], | |
'dimension': mne_raw._orig_units[keys[i]], | |
'sample_rate': mne_raw._raw_extras[0]['n_samps'][i], | |
'physical_min': mne_raw._raw_extras[0]['physical_min'][i], | |
'physical_max': mne_raw._raw_extras[0]['physical_max'][i], | |
'digital_min': mne_raw._raw_extras[0]['digital_min'][i], | |
'digital_max': mne_raw._raw_extras[0]['digital_max'][i], | |
'transducer': '', | |
'prefilter': ''} | |
except: | |
ch_dict = {'label': mne_raw.ch_names[i], | |
'dimension': mne_raw._orig_units[keys[i]], | |
'sample_rate': sfreq, | |
'physical_min': channels.min(), | |
'physical_max': channels.max(), | |
'digital_min': dmin, | |
'digital_max': dmax, | |
'transducer': '', | |
'prefilter': ''} | |
channel_info.append(ch_dict) | |
f.setPatientCode(mne_raw._raw_extras[0]['subject_info'].get('id', '0')) | |
f.setPatientName(mne_raw._raw_extras[0]['subject_info'].get('name', 'noname')) | |
f.setTechnician('mne-gist-save-edf-skjerns') | |
f.setSignalHeaders(channel_info) | |
f.setStartdatetime(date) | |
f.writeSamples(channels) | |
for annotation in mne_raw.annotations: | |
onset = annotation['onset'] | |
duration = annotation['duration'] | |
description = annotation['description'] | |
f.writeAnnotation(onset, duration, description) | |
except Exception as e: | |
raise e | |
finally: | |
f.close() | |
return True |
Hey, thanks for the great little snippet. Somehow I have the problem that when I write something to .edf using it, the remainder of the last full second is zero padded (at least when I open it using MNE).
Do you have any idea why that might be, or how to prevent it? Thanks.
Hey, thanks for the great little snippet. Somehow I have the problem that when I write something to .edf using it, the remainder of the last full second is zero padded (at least when I open it using MNE). Do you have any idea why that might be, or how to prevent it? Thanks.
That is due to the way EDF is implemented, as it saves data in discrete blocks. By default these blocks are 1 second long. This blocksize (record_size
) is also used to calculate the sampling frequency together with nr of samples in each data record (per channel) -> smp_per_record
. so if you change the record_size
toaccomodate exactly for the number of samples you want to store, you must adapt the smp_per_record
accordingly. e.g. if you have 12.5 seconds of data with 100 Hz, you need to choose a record_size
such that it fits into the 12.5 seconds and set the smp_per_record
accordingly, here record_size=0.5
and smp_per_record=50
would work. However it becomes more difficult if you have a really odd number of seconds or sampling frequency, especially one where the solution for smp_per_record
would not result in a neat integer.
in summary: it is possible to avoid the zero-padding, but it's not as easy as it seems.
PS: MNE now supports exporting EDF via edfio
: https://mne.tools/stable/generated/mne.export.export_raw.html
Thanks for the fast and very helpful reply!
Here is a solution that works for me, though clearly has some downsides to it: https://gist.github.com/rectified-evasion/dce33a21e947623fb2c6c77292bf7bc8 (loss of precision + truncation, if necessary).
Your comment led me to look a bit deeper. It seems that the
mne_raw._raw_extras
dictionary is missing some keys, which causes the code to use values from the data for the various channel infos--the "except" in the following:And it's getting those values from, surprise surprise, the BioSemi Status channel.
I think the simplest solution is to get that
physical_min
and max from all channels except any named Status--I'll write something up for that in a few hours when I have some time.Edit: See below. Simple change.