-
-
Save sklam/362c883eff73d297134c to your computer and use it in GitHub Desktop.
Numba optimized raytracing. From 23seconds to 9seconds.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import print_function, division | |
from timeit import default_timer as timer | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from numba import njit | |
w = 400 | |
h = 300 | |
TYPE_PLANE = 1 | |
TYPE_SPHERE = 2 | |
# def normalize(x): | |
# x /= np.linalg.norm(x) | |
# return x | |
@njit | |
def normalize(x): | |
n = 0 | |
for i in range(x.size): | |
xi = x[i] | |
n += xi * xi | |
n = np.sqrt(n) | |
for i in range(x.size): | |
x[i] /= n | |
return x | |
@njit | |
def dot(a, b): | |
return np.sum(a * b) | |
@njit | |
def intersect_plane(O, D, P, N): | |
# Return the distance from O to the intersection of the ray (O, D) with the | |
# plane (P, N), or +inf if there is no intersection. | |
# O and P are 3D points, D and N (normal) are normalized vectors. | |
denom = dot(D, N) | |
if np.abs(denom) < 1e-6: | |
return np.inf | |
d = dot(P - O, N) / denom | |
if d < 0: | |
return np.inf | |
return d | |
@njit | |
def intersect_sphere(O, D, S, R): | |
# Return the distance from O to the intersection of the ray (O, D) with the | |
# sphere (S, R), or +inf if there is no intersection. | |
# O and S are 3D points, D (direction) is a normalized vector, R is a scalar. | |
a = dot(D, D) | |
OS = O - S | |
b = 2 * dot(D, OS) | |
c = dot(OS, OS) - R * R | |
disc = b * b - 4 * a * c | |
if disc > 0: | |
distSqrt = np.sqrt(disc) | |
q = (-b - distSqrt) / 2.0 if b < 0 else (-b + distSqrt) / 2.0 | |
t0 = q / a | |
t1 = c / q | |
t0, t1 = min(t0, t1), max(t0, t1) | |
if t1 >= 0: | |
return t1 if t0 < 0 else t0 | |
return np.inf | |
@njit | |
def intersect(O, D, obj): | |
if obj.type == TYPE_PLANE: | |
return intersect_plane(O, D, obj.position, obj.normal) | |
else: | |
assert obj.type == TYPE_SPHERE | |
return intersect_sphere(O, D, obj.position, obj.radius) | |
@njit | |
def get_normal(obj, M): | |
# Find normal. | |
N = np.zeros_like(obj.position) | |
if obj.type == TYPE_SPHERE: | |
diff = M - obj.position | |
for i in range(diff.size): | |
N[i] = diff[i] | |
normalize(N) | |
elif obj.type == TYPE_PLANE: | |
for i in range(N.size): | |
N[i] = obj.normal[i] | |
else: | |
assert False | |
return N | |
def get_color(obj, M): | |
color = obj['color'] | |
if not hasattr(color, '__len__'): | |
color = color(M) | |
return color | |
@njit | |
def find_intersect_object(rayO, rayD): | |
t = np.inf | |
obj_idx = -1 | |
for i, obj in enumerate(scene_array): | |
t_obj = intersect(rayO, rayD, obj) | |
if t_obj < t: | |
t, obj_idx = t_obj, i | |
return t, obj_idx | |
@njit | |
def find_shadow(M, N, toL, obj_idx): | |
ls = np.zeros(scene_array.size, dtype=np.float64) | |
ct = 0 | |
for k, obj_sh in enumerate(scene_array): | |
if k != obj_idx: | |
ls[k] = intersect(M + N * .0001, toL, obj_sh) | |
ct += 1 | |
else: | |
ls[k] = np.inf | |
return ls, ct | |
class NoIntersection(Exception): | |
pass | |
@njit(nogil=True) | |
def fast_trace_ray(rayO, rayD): | |
# # Find first point of intersection with the scene. | |
t, obj_idx = find_intersect_object(rayO, rayD) | |
if t == np.inf: | |
raise NoIntersection | |
# Find the point of intersection on the object. | |
M = rayO + rayD * t | |
# Find properties of the object. | |
N = get_normal(scene_array[obj_idx], M) | |
toL = normalize(L - M) | |
toO = normalize(rayO - M) | |
# Shadow: find if the point is shadowed or not. | |
l, ct = find_shadow(M, N, toL, obj_idx) | |
if ct and np.min(l) < np.inf: | |
raise NoIntersection | |
return t, obj_idx, M, N, toL, toO, l, ct | |
def trace_ray(rayO, rayD): | |
try: | |
t, obj_idx, M, N, toL, toO, l, ct = fast_trace_ray(rayO, rayD) | |
except NoIntersection: | |
return | |
# Start computing the color. | |
col_ray = ambient | |
# Find the object. | |
obj = scene[obj_idx] | |
color = get_color(obj, M) | |
# Lambert shading (diffuse). | |
col_ray += obj.get('diffuse_c', diffuse_c) * max(dot(N, toL), 0) * color | |
# Blinn-Phong shading (specular). | |
col_ray += obj.get('specular_c', specular_c) * max( | |
dot(N, normalize(toL + toO)), 0) ** specular_k * color_light | |
return obj, M, N, col_ray | |
def add_sphere(position, radius, color): | |
return dict(type=TYPE_SPHERE, position=np.array(position), | |
radius=np.array(radius), color=np.array(color), reflection=.5) | |
def add_plane(position, normal): | |
return dict(type=TYPE_PLANE, position=np.array(position), | |
normal=np.array(normal), | |
color=lambda M: (color_plane0 | |
if (int(M[0] * 2) % 2) == ( | |
int(M[2] * 2) % 2) else color_plane1), | |
diffuse_c=.75, specular_c=.5, reflection=.25) | |
object_struct = np.dtype([ | |
('type', np.int8), | |
('position', np.float64, 3), | |
('normal', np.float64, 3), | |
('radius', np.float64), | |
# ('reflection', np.float64), | |
# ('diffuse_c', np.float64), | |
# ('specular_c', np.float64), | |
], align=True) | |
# List of objects. | |
color_plane0 = 1. * np.ones(3) | |
color_plane1 = 0. * np.ones(3) | |
scene = [add_sphere([.75, .1, 1.], .6, [0., 0., 1.]), | |
add_sphere([-.75, .1, 2.25], .6, [.5, .223, .5]), | |
add_sphere([-2.75, .1, 3.5], .6, [1., .572, .184]), | |
add_plane([0., -.5, 0.], [0., 1., 0.]), | |
] | |
# Fill array | |
scene_array = np.recarray(len(scene), dtype=object_struct) | |
for idx, obj in enumerate(scene): | |
item = scene_array[idx] | |
item.type = obj['type'] | |
item.position[:] = obj['position'] | |
if item.type == TYPE_PLANE: | |
item.normal[:] = obj['normal'] | |
# item.reflection = obj['reflection'] | |
# item.diffuse_c = obj['diffuse_c'] | |
# item.specular_c = obj['specular_c'] | |
else: | |
item.radius = obj['radius'] | |
# Light position and color. | |
L = np.array([5., 5., -10.]) | |
color_light = np.ones(3) | |
# Default light and material parameters. | |
ambient = .05 | |
diffuse_c = 1. | |
specular_c = 1. | |
specular_k = 50 | |
depth_max = 5 # Maximum number of light reflections. | |
r = float(w) / h | |
# Screen coordinates: x0, y0, x1, y1. | |
S = (-1., -1. / r + .25, 1., 1. / r + .25) | |
def inner_loop(img, col, O, x, y, i, j): | |
Q = np.array([0., 0., 0.]) # Camera pointing to. | |
col[:] = 0 | |
Q[:2] = (x, y) | |
D = normalize(Q - O) | |
depth = 0 | |
rayO, rayD = O, D | |
reflection = 1. | |
# Loop through initial and secondary rays. | |
while depth < depth_max: | |
traced = trace_ray(rayO, rayD) | |
if not traced: | |
break | |
obj, M, N, col_ray = traced | |
# Reflection: create a new ray. | |
rayO, rayD = M + N * .0001, normalize( | |
rayD - 2 * dot(rayD, N) * N) | |
depth += 1 | |
col += reflection * col_ray | |
reflection *= obj.get('reflection', 1.) | |
img[h - j - 1, i, :] = np.clip(col, 0, 1) | |
def main(): | |
img = np.zeros((h, w, 3)) | |
col = np.zeros(3) # Current color. | |
O = np.array([0., 0.35, -1.]) # Camera. | |
ts = timer() | |
for i, x in enumerate(np.linspace(S[0], S[2], w)): | |
# Print every 5% increment | |
if i % (w // 100 * 5) == 0: | |
print("{0:.1f}%".format(i / w * 100)) | |
for j, y in enumerate(np.linspace(S[1], S[3], h)): | |
inner_loop(img, col.copy(), O, x, y, i, j) | |
te = timer() | |
print("Time", te - ts) | |
print("Write to fig.png") | |
plt.imsave('fig.png', img) | |
# For 400x300 | |
# Original speed is 23 second | |
# Numba optimized is 9 second | |
if __name__ == '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment