Last active
February 12, 2018 22:18
-
-
Save skulumani/827f3bc56c491a1619b23471d605022f to your computer and use it in GitHub Desktop.
Roadster animation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
"""Plot the SpaceX Roadster in the Heliocentric frame | |
The ephemerides for the Roadster can be found at the following locations: | |
-143205 : JPL Horizons | |
https://www.projectpluto.com/temp/spacex.htm | |
""" | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import matplotlib.animation as animation | |
from astro import planets, constants, planets, time, kepler | |
au2km = constants.au2km | |
deg2rad = constants.deg2rad | |
sec2day = constants.sec2day | |
day2sec = constants.day2sec | |
# roadster heliocentric orbital elements | |
def roadster_coe(jd): | |
"""Output the COES of the roadster at the given JD | |
""" | |
epoch = 2458190.500000000 | |
ecc = 2.560214125839113E-01 # eccentricy | |
per = 9.860631722474498E-01 * au2km # periapsis | |
inc = 1.078548455272089E+00 * deg2rad # inclination | |
raan = 3.171871226218810E+02 * deg2rad # | |
arg_p = 1.774087594994931E+02 * deg2rad | |
jd_per = 2458153.531206728425 | |
mean_motion = 6.459332187157216E-01 * deg2rad * sec2day | |
mean_anom = 2.387937163002724E+01 * deg2rad | |
E, nu, count = kepler.kepler_eq_E(mean_anom, ecc) | |
nu = 4.031991175737090E+01 * deg2rad | |
sma = 1.325391871387247E+00 * au2km | |
apo = 1.664720570527044E+00 * au2km | |
period = 5.573331570030891E+02 * day2sec | |
# compute some other elements | |
p = kepler.semilatus_rectum(sma, ecc) | |
deltat = (jd - epoch) * day2sec | |
# propogate from epoch to JD and find nu | |
Ef, Mf, nuf = kepler.tof_delta_t(p, ecc, constants.sun.mu, nu, deltat) | |
roadster_coe = planets.COE(p=p, ecc=ecc, inc=inc, raan=raan, | |
argp=arg_p, nu=nuf) | |
# compute the vector in J2000 Ecliptic frame | |
r_ecliptic, v_ecliptic, r_pqw, v_pqw = kepler.coe2rv(p, ecc, inc, | |
raan, arg_p, nuf, | |
constants.sun.mu) | |
return roadster_coe, r_ecliptic, v_ecliptic | |
# scale everything by AU2KM | |
jd_start = time.date2jd(2018, 3, 1, 0,0, 0)[0] | |
jd_end = time.date2jd(2028, 3, 1, 0, 0, 0)[0] | |
jd_span = np.arange(jd_start, jd_end, 1) | |
_, roadster_ecliptic, roadster_ecliptic = roadster_coe(jd_start) | |
mercury_coe, mercury_ecliptic, _, _ , _ = planets.planet_coe(jd_start, 0) | |
venus_coe, venus_ecliptic, _, _ , _ = planets.planet_coe(jd_start, 1) | |
earth_coe, earth_ecliptic, _, _, _= planets.planet_coe(jd_start, 2) | |
mars_coe, mars_ecliptic, _, _, _ = planets.planet_coe(jd_start, 3) | |
# initialize all the plot elements (orbit position and conic orbits) | |
fig, ax = plt.subplots() | |
ax.set_xlim(-5*au2km, 5*au2km) | |
ax.set_ylim(-5*au2km, 5*au2km) | |
rp, = ax.plot(roadster_ecliptic[0], roadster_ecliptic[1], marker='o', color='r') | |
mcp, = ax.plot(mercury_ecliptic[0], mercury_ecliptic[1], marker='o', color='c') | |
vp, = ax.plot(venus_ecliptic[0], venus_ecliptic[1], marker='o', color='m') | |
ep, = ax.plot(earth_ecliptic[0], earth_ecliptic[1],marker='o', color='g') | |
mp, = ax.plot(mars_ecliptic[0], mars_ecliptic[1],marker='x', color='b') | |
# draw conic orbits | |
mercury_inertial, _, _, _, _, _ = kepler.conic_orbit(mercury_coe.p, mercury_coe.ecc, mercury_coe.inc, mercury_coe.raan, mercury_coe.argp, 0, 2*np.pi, mu=constants.sun.mu) | |
venus_inertial, _, _, _, _, _ = kepler.conic_orbit(venus_coe.p, venus_coe.ecc, venus_coe.inc, venus_coe.raan, venus_coe.argp, 0, 2*np.pi, mu=constants.sun.mu) | |
earth_inertial, _, _, _, _, _ = kepler.conic_orbit(earth_coe.p, earth_coe.ecc, earth_coe.inc, earth_coe.raan, earth_coe.argp, 0, 2*np.pi, mu=constants.sun.mu) | |
mars_inertial, _, _, _, _, _ = kepler.conic_orbit(mars_coe.p, mars_coe.ecc, mars_coe.inc, mars_coe.raan, mars_coe.argp, 0, 2*np.pi, mu=constants.sun.mu) | |
ax.plot(mercury_inertial[:,0],mercury_inertial[:,1], color='c') | |
ax.plot(venus_inertial[:,0],venus_inertial[:,1], color='m') | |
ax.plot(earth_inertial[:,0],earth_inertial[:,1], color='green') | |
ax.plot(mars_inertial[:,0],mars_inertial[:,1], color='red') | |
ax.axis('equal') | |
def init(): | |
rp.set_data([], []) | |
mcp.set_data([], []) | |
vp.set_data([], []) | |
ep.set_data([], []) | |
mp.set_data([], []) | |
# ax.plot(state_eci[:,0], state_eci[:,1], color='red') | |
return rp, mcp, vp, ep, mp | |
def animate(jd): | |
# compute the new position | |
_, roadster_ecliptic, _ = roadster_coe(jd) | |
_, mercury_ecliptic, _, _ , _ = planets.planet_coe(jd, 0) | |
_, venus_ecliptic, _, _ , _ = planets.planet_coe(jd, 1) | |
_, earth_ecliptic, _, _, _= planets.planet_coe(jd, 2) | |
_, mars_ecliptic, _, _, _ = planets.planet_coe(jd, 3) | |
rp.set_data(roadster_ecliptic[0], roadster_ecliptic[1]) | |
mcp.set_data(mercury_ecliptic[0], mercury_ecliptic[1]) | |
vp.set_data(venus_ecliptic[0], venus_ecliptic[1]) | |
ep.set_data(earth_ecliptic[0], earth_ecliptic[1]) | |
mp.set_data(mars_ecliptic[0], mars_ecliptic[1]) | |
return rp, mcp, vp, ep, mp | |
# get the elements for all the planets | |
# plot them all in an animation using matplotlib | |
ani = animation.FuncAnimation(fig, animate, jd_span, interval=10, blit=False, init_func=init) | |
# loop over julian date | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment