Created
April 29, 2017 11:57
-
-
Save skyer9/2487f5dd1b57ceb6b95521d5cb10da22 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# https://github.com/fchollet/keras/blob/master/examples/mnist_cnn.py | |
'''Trains a simple convnet on the MNIST dataset. | |
Gets to 99.25% test accuracy after 12 epochs | |
(there is still a lot of margin for parameter tuning). | |
16 seconds per epoch on a GRID K520 GPU. | |
''' | |
from __future__ import print_function | |
import numpy as np | |
from keras.datasets import mnist | |
from keras.models import Sequential | |
from keras.layers import Dense, Dropout, Activation, Flatten | |
from keras.layers import Conv2D, MaxPooling2D | |
from keras.utils import np_utils | |
from keras import backend as K | |
from keras.callbacks import TensorBoard | |
np.random.seed(1337) # for reproducibility | |
batch_size = 128 | |
nb_classes = 10 | |
nb_epoch = 12 | |
img_rows, img_cols = 28, 28 | |
nb_filters = 32 | |
pool_size = (2, 2) | |
kernel_size = (3, 3) | |
# ============================================================================== | |
# load data | |
(X_train, y_train), (X_test, y_test) = mnist.load_data() | |
if K.image_dim_ordering() == 'th': | |
X_train = X_train.reshape(X_train.shape[0], 1, img_rows, img_cols) | |
X_test = X_test.reshape(X_test.shape[0], 1, img_rows, img_cols) | |
input_shape = (1, img_rows, img_cols) | |
else: | |
X_train = X_train.reshape(X_train.shape[0], img_rows, img_cols, 1) | |
X_test = X_test.reshape(X_test.shape[0], img_rows, img_cols, 1) | |
input_shape = (img_rows, img_cols, 1) | |
X_train = X_train.astype('float32') | |
X_test = X_test.astype('float32') | |
X_train /= 255 | |
X_test /= 255 | |
print('X_train shape:', X_train.shape) | |
print(X_train.shape[0], 'train samples') | |
print(X_test.shape[0], 'test samples') | |
Y_train = np_utils.to_categorical(y_train, nb_classes) | |
Y_test = np_utils.to_categorical(y_test, nb_classes) | |
# ============================================================================== | |
# build model | |
model = Sequential() | |
model.add(Conv2D(nb_filters, | |
kernel_size, | |
padding='valid', | |
input_shape=input_shape)) | |
model.add(Activation('relu')) | |
model.add(Conv2D(nb_filters, kernel_size)) | |
model.add(Activation('relu')) | |
model.add(MaxPooling2D(pool_size=pool_size)) | |
model.add(Dropout(0.25)) | |
model.add(Flatten()) | |
model.add(Dense(128)) | |
model.add(Activation('relu')) | |
model.add(Dropout(0.5)) | |
model.add(Dense(nb_classes)) | |
model.add(Activation('softmax')) | |
model.compile(loss='categorical_crossentropy', | |
optimizer='adadelta', | |
metrics=['accuracy']) | |
tensorboard = TensorBoard(log_dir='./logs', | |
histogram_freq=0, | |
write_graph=True, | |
write_images=False) | |
model.fit(X_train, Y_train, | |
batch_size=batch_size, | |
epochs=nb_epoch, | |
verbose=1, | |
validation_data=(X_test, Y_test), | |
callbacks=[tensorboard]) | |
# ============================================================================== | |
# evaluate | |
score = model.evaluate(X_test, Y_test, verbose=0) | |
print('Test score:', score[0]) | |
print('Test accuracy:', score[1]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment