Created
December 6, 2014 19:50
-
-
Save slarson/079a866b091a7a4088be to your computer and use it in GitHub Desktop.
Hodgkin Huxley intro
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
# <nbformat>3.0</nbformat> | |
# <markdowncell> | |
# Full [Hodgkin Huxley Model](http://en.wikipedia.org/wiki/Hodgkin-Huxley_model) | |
# ========================== | |
# | |
# By Stephen Larson ([email protected]) for [OpenWorm](http://openworm.org) | |
# | |
# Adapted from UCSD Computational Lab by Jeff Bush ([email protected]) | |
# <codecell> | |
import scipy as sp | |
import pylab as plt | |
from scipy.integrate import odeint | |
from scipy import stats | |
import scipy.linalg as lin | |
# <markdowncell> | |
# ## Constants | |
# ### $C_m$ is membrane capacitance, in $\frac{uF}{cm^2}$ | |
# <codecell> | |
C_m = 1.0 | |
# <markdowncell> | |
# ### $g_{Na}$ is maximum conductance of sodium, in $\frac{mS}{cm^2}$ | |
# <codecell> | |
g_Na = 120.0 | |
# <markdowncell> | |
# ### $g_{K}$ is maximum conductance of potassium, in $\frac{mS}{cm^2}$ | |
# <codecell> | |
g_K = 36.0 | |
# <markdowncell> | |
# ### $g_{L}$ is maximum conductance of leak, in $\frac{mS}{cm^2}$ | |
# <codecell> | |
g_L = 0.3 | |
# <markdowncell> | |
# ### The Nernst reversal potentials of sodium $E_{Na}$, potassium $E_K$ and leak $E_L$, in millivolts $mV$ | |
# <codecell> | |
E_Na = 50.0 | |
E_K = -77.0 | |
E_L = -54.387 | |
# <markdowncell> | |
# # Channel gating kinetics | |
# ## Activation variables are functions of membrane voltage | |
# | |
# <markdowncell> | |
# $\alpha_m(V)\ = 0.1\ \frac{V + 40}{ 1 - \exp(-\frac{V + 40}{10})}$ | |
# | |
# $$\beta_m(V)\ = 4\ \exp(-\frac{V + 65}{18}) $$ | |
# | |
# $$\alpha_h(V)\ = 0.07\ \exp(-\frac{V + 65}{20}) $$ | |
# | |
# $$\beta_h(V)\ = \frac{1}{1 + \exp(-\frac{V + 35}{10}) }$$ | |
# | |
# $$\alpha_n(V)\ = 0.01 \ \frac{V + 55}{ 1 - \exp(-\frac{V + 55}{10})} $$ | |
# | |
# $$\beta_n(V)\ = 0.125\ \exp(-\frac{V + 65}{ 80})$$ | |
# <codecell> | |
def alpha_m(V): return 0.1*(V+40.0)/(1.0 - sp.exp(-(V+40.0) / 10.0)) | |
def beta_m(V): return 4.0*sp.exp(-(V+65.0) / 18.0) | |
def alpha_h(V): return 0.07*sp.exp(-(V+65.0) / 20.0) | |
def beta_h(V): return 1.0/(1.0 + sp.exp(-(V+35.0) / 10.0)) | |
def alpha_n(V): return 0.01*(V+55.0)/(1.0 - sp.exp(-(V+55.0) / 10.0)) | |
def beta_n(V): return 0.125*sp.exp(-(V+65) / 80.0) | |
# <markdowncell> | |
# # Membrane currents (in $\frac{uA}{cm^2}$) | |
# | |
# ## Sodium (Na = element name) | |
# $$I_{Na} = g_{Na}\ m^3 h\ (V - E_{Na})$$ | |
# <codecell> | |
def I_Na(V,m,h):return g_Na * m**3 * h * (V - E_Na) | |
# <markdowncell> | |
# ## Potassium (K = element name) | |
# $$I_K = g_K\ n^4\ (V - E_K)$$ | |
# <codecell> | |
def I_K(V, n): return g_K * n**4 * (V - E_K) | |
# <markdowncell> | |
# ##Leak | |
# $$I_L = g_L\ (V - E_L)$$ | |
# <codecell> | |
def I_L(V): return g_L * (V - E_L) | |
# <markdowncell> | |
# # External current | |
# ## step up 10 $\frac{uA}{cm^2}$ after $10ms$ | |
# <codecell> | |
def I_inj(t): | |
return 10*(t>10) - 10*(t>100) | |
#return 10*(t>100) - 10*(t>200) + 35*(t>300) | |
#return 10*t | |
# <markdowncell> | |
# # The time to integrate over | |
# <codecell> | |
t = sp.arange(0.0, 100.0, 0.1) | |
# <markdowncell> | |
# # Integrate! | |
# $C_m\ {dV \over dt} = -I_{Na} -I_K - I_L + I_{ext}$ | |
# <codecell> | |
def dALLdt(X, t): | |
V, m, h, n = X | |
#calculate membrane potential & activation variables | |
dVdt = (I_inj(t) - I_Na(V, m, h) - I_K(V, n) - I_L(V)) / C_m | |
dmdt = alpha_m(V)*(1.0-m) - beta_m(V)*m | |
dhdt = alpha_h(V)*(1.0-h) - beta_h(V)*h | |
dndt = alpha_n(V)*(1.0-n) - beta_n(V)*n | |
return dVdt, dmdt, dhdt, dndt | |
X = odeint(dALLdt, [-65, 0.05, 0.6, 0.32], t) | |
# <markdowncell> | |
# # Retrieve the values from the output matrix, X | |
# <codecell> | |
V = X[:,0] | |
m = X[:,1] | |
h = X[:,2] | |
n = X[:,3] | |
ina = I_Na(V,m,h) | |
ik = I_K(V, n) | |
il = I_L(V) | |
# <markdowncell> | |
# # Plot! | |
# <markdowncell> | |
# ## Injected current: $I_{ext}$ | |
# <codecell> | |
plt.title("Injected current: $I_{ext}$") | |
plt.plot(t, I_inj(t), 'k') | |
plt.xlabel('t (ms)') | |
plt.ylabel('$I_{inj}$ ($\\mu{A}/cm^2$)') | |
plt.ylim(-1, 31) | |
plt.show() | |
# <markdowncell> | |
# Hodgkin-Huxley Neuron membrane potential: $V$ | |
# <codecell> | |
plt.title('Hodgkin-Huxley Neuron membrane potential: $V$') | |
plt.plot(t, V, 'k') | |
plt.ylabel('V (mV)') | |
plt.xlabel('t (ms)') | |
plt.show() | |
# <markdowncell> | |
# ## Currents: $I_{Na}$, $I_{K}$, $I_{L}$ | |
# <codecell> | |
plt.title("Currents: $I_{Na}$, $I_{K}$, $I_{L}$") | |
plt.plot(t, ina, 'c', label='$I_{Na}$') | |
plt.plot(t, ik, 'y', label='$I_{K}$') | |
plt.plot(t, il, 'm', label='$I_{L}$') | |
plt.ylabel('Current') | |
plt.xlabel('t (ms)') | |
plt.legend() | |
plt.show() | |
# <markdowncell> | |
# ## Activation variables: m, n, h | |
# <codecell> | |
plt.title("Activation variables: m, n, h") | |
plt.plot(t, m, 'r', label='m') | |
plt.plot(t, h, 'g', label='h') | |
plt.plot(t, n, 'b', label='n') | |
plt.ylabel('Gating Value (unitless)') | |
plt.xlabel('t (ms)') | |
plt.legend() | |
plt.show() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment