Created
December 6, 2014 19:53
-
-
Save slarson/37463b35ef8606629d2e to your computer and use it in GitHub Desktop.
Hodgkin Huxley Python Implementation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import scipy as sp | |
import pylab as plt | |
from scipy.integrate import odeint | |
from scipy import stats | |
import scipy.linalg as lin | |
## Full Hodgkin-Huxley Model (copied from Computational Lab 2) | |
# Constants | |
C_m = 1.0 # membrane capacitance, in uF/cm^2 | |
g_Na = 120.0 # maximum conducances, in mS/cm^2 | |
g_K = 36.0 | |
g_L = 0.3 | |
E_Na = 50.0 # Nernst reversal potentials, in mV | |
E_K = -77.0 | |
E_L = -54.387 | |
# Channel gating kinetics | |
# Functions of membrane voltage | |
def alpha_m(V): return 0.1*(V+40.0)/(1.0 - sp.exp(-(V+40.0) / 10.0)) | |
def beta_m(V): return 4.0*sp.exp(-(V+65.0) / 18.0) | |
def alpha_h(V): return 0.07*sp.exp(-(V+65.0) / 20.0) | |
def beta_h(V): return 1.0/(1.0 + sp.exp(-(V+35.0) / 10.0)) | |
def alpha_n(V): return 0.01*(V+55.0)/(1.0 - sp.exp(-(V+55.0) / 10.0)) | |
def beta_n(V): return 0.125*sp.exp(-(V+65) / 80.0) | |
# Membrane currents (in uA/cm^2) | |
# Sodium (Na = element name) | |
def I_Na(V,m,h):return g_Na * m**3 * h * (V - E_Na) | |
# Potassium (K = element name) | |
def I_K(V, n): return g_K * n**4 * (V - E_K) | |
# Leak | |
def I_L(V): return g_L * (V - E_L) | |
# External current | |
def I_inj(t): # step up 10 uA/cm^2 every 100ms for 400ms | |
return 10*(t>100) - 10*(t>200) + 35*(t>300) | |
#return 10*t | |
# The time to integrate over | |
t = sp.arange(0.0, 400.0, 0.1) | |
# Integrate! | |
def dALLdt(X, t): | |
V, m, h, n = X | |
#calculate membrane potential & activation variables | |
dVdt = (I_inj(t) - I_Na(V, m, h) - I_K(V, n) - I_L(V)) / C_m | |
dmdt = alpha_m(V)*(1.0-m) - beta_m(V)*m | |
dhdt = alpha_h(V)*(1.0-h) - beta_h(V)*h | |
dndt = alpha_n(V)*(1.0-n) - beta_n(V)*n | |
return dVdt, dmdt, dhdt, dndt | |
X = odeint(dALLdt, [-65, 0.05, 0.6, 0.32], t) | |
V = X[:,0] | |
m = X[:,1] | |
h = X[:,2] | |
n = X[:,3] | |
ina = I_Na(V,m,h) | |
ik = I_K(V, n) | |
il = I_L(V) | |
plt.figure() | |
plt.subplot(4,1,1) | |
plt.title('Hodgkin-Huxley Neuron') | |
plt.plot(t, V, 'k') | |
plt.ylabel('V (mV)') | |
plt.subplot(4,1,2) | |
plt.plot(t, ina, 'c', label='$I_{Na}$') | |
plt.plot(t, ik, 'y', label='$I_{K}$') | |
plt.plot(t, il, 'm', label='$I_{L}$') | |
plt.ylabel('Current') | |
plt.legend() | |
plt.subplot(4,1,3) | |
plt.plot(t, m, 'r', label='m') | |
plt.plot(t, h, 'g', label='h') | |
plt.plot(t, n, 'b', label='n') | |
plt.ylabel('Gating Value') | |
plt.legend() | |
plt.subplot(4,1,4) | |
plt.plot(t, I_inj(t), 'k') | |
plt.xlabel('t (ms)') | |
plt.ylabel('$I_{inj}$ ($\\mu{A}/cm^2$)') | |
plt.ylim(-1, 31) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
What is the unit of applied external current
? Is it uA/cm2 ? If so then how it is compatible with the equation of dVdt ? Because all voltages are in millivolts and all gated currents are in milliAmperes