Skip to content

Instantly share code, notes, and snippets.

@slarson
Created December 6, 2014 19:53
Show Gist options
  • Save slarson/37463b35ef8606629d2e to your computer and use it in GitHub Desktop.
Save slarson/37463b35ef8606629d2e to your computer and use it in GitHub Desktop.
Hodgkin Huxley Python Implementation
import scipy as sp
import pylab as plt
from scipy.integrate import odeint
from scipy import stats
import scipy.linalg as lin
## Full Hodgkin-Huxley Model (copied from Computational Lab 2)
# Constants
C_m = 1.0 # membrane capacitance, in uF/cm^2
g_Na = 120.0 # maximum conducances, in mS/cm^2
g_K = 36.0
g_L = 0.3
E_Na = 50.0 # Nernst reversal potentials, in mV
E_K = -77.0
E_L = -54.387
# Channel gating kinetics
# Functions of membrane voltage
def alpha_m(V): return 0.1*(V+40.0)/(1.0 - sp.exp(-(V+40.0) / 10.0))
def beta_m(V): return 4.0*sp.exp(-(V+65.0) / 18.0)
def alpha_h(V): return 0.07*sp.exp(-(V+65.0) / 20.0)
def beta_h(V): return 1.0/(1.0 + sp.exp(-(V+35.0) / 10.0))
def alpha_n(V): return 0.01*(V+55.0)/(1.0 - sp.exp(-(V+55.0) / 10.0))
def beta_n(V): return 0.125*sp.exp(-(V+65) / 80.0)
# Membrane currents (in uA/cm^2)
# Sodium (Na = element name)
def I_Na(V,m,h):return g_Na * m**3 * h * (V - E_Na)
# Potassium (K = element name)
def I_K(V, n): return g_K * n**4 * (V - E_K)
# Leak
def I_L(V): return g_L * (V - E_L)
# External current
def I_inj(t): # step up 10 uA/cm^2 every 100ms for 400ms
return 10*(t>100) - 10*(t>200) + 35*(t>300)
#return 10*t
# The time to integrate over
t = sp.arange(0.0, 400.0, 0.1)
# Integrate!
def dALLdt(X, t):
V, m, h, n = X
#calculate membrane potential & activation variables
dVdt = (I_inj(t) - I_Na(V, m, h) - I_K(V, n) - I_L(V)) / C_m
dmdt = alpha_m(V)*(1.0-m) - beta_m(V)*m
dhdt = alpha_h(V)*(1.0-h) - beta_h(V)*h
dndt = alpha_n(V)*(1.0-n) - beta_n(V)*n
return dVdt, dmdt, dhdt, dndt
X = odeint(dALLdt, [-65, 0.05, 0.6, 0.32], t)
V = X[:,0]
m = X[:,1]
h = X[:,2]
n = X[:,3]
ina = I_Na(V,m,h)
ik = I_K(V, n)
il = I_L(V)
plt.figure()
plt.subplot(4,1,1)
plt.title('Hodgkin-Huxley Neuron')
plt.plot(t, V, 'k')
plt.ylabel('V (mV)')
plt.subplot(4,1,2)
plt.plot(t, ina, 'c', label='$I_{Na}$')
plt.plot(t, ik, 'y', label='$I_{K}$')
plt.plot(t, il, 'm', label='$I_{L}$')
plt.ylabel('Current')
plt.legend()
plt.subplot(4,1,3)
plt.plot(t, m, 'r', label='m')
plt.plot(t, h, 'g', label='h')
plt.plot(t, n, 'b', label='n')
plt.ylabel('Gating Value')
plt.legend()
plt.subplot(4,1,4)
plt.plot(t, I_inj(t), 'k')
plt.xlabel('t (ms)')
plt.ylabel('$I_{inj}$ ($\\mu{A}/cm^2$)')
plt.ylim(-1, 31)
plt.show()
@brijeshm39
Copy link

What is the unit of applied external current
? Is it uA/cm2 ? If so then how it is compatible with the equation of dVdt ? Because all voltages are in millivolts and all gated currents are in milliAmperes

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment