Last active
September 24, 2021 17:35
-
-
Save slaypni/b95cb69fd1c82ca4c2ff to your computer and use it in GitHub Desktop.
A wrapper class of XGBoost for scikit-learn
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
# -*- coding: utf-8 -*- | |
import sys | |
import math | |
import numpy as np | |
sys.path.append('xgboost/wrapper/') | |
import xgboost as xgb | |
class XGBoostClassifier(): | |
def __init__(self, num_boost_round=10, **params): | |
self.clf = None | |
self.num_boost_round = num_boost_round | |
self.params = params | |
self.params.update({'objective': 'multi:softprob'}) | |
def fit(self, X, y, num_boost_round=None): | |
num_boost_round = num_boost_round or self.num_boost_round | |
self.label2num = dict((label, i) for i, label in enumerate(sorted(set(y)))) | |
dtrain = xgb.DMatrix(X, label=[self.label2num[label] for label in y]) | |
self.clf = xgb.train(params=self.params, dtrain=dtrain, num_boost_round=num_boost_round) | |
def predict(self, X): | |
num2label = dict((i, label)for label, i in self.label2num.items()) | |
Y = self.predict_proba(X) | |
y = np.argmax(Y, axis=1) | |
return np.array([num2label[i] for i in y]) | |
def predict_proba(self, X): | |
dtest = xgb.DMatrix(X) | |
return self.clf.predict(dtest) | |
def score(self, X, y): | |
Y = self.predict_proba(X) | |
return 1 / logloss(y, Y) | |
def get_params(self, deep=True): | |
return self.params | |
def set_params(self, **params): | |
if 'num_boost_round' in params: | |
self.num_boost_round = params.pop('num_boost_round') | |
if 'objective' in params: | |
del params['objective'] | |
self.params.update(params) | |
return self | |
def logloss(y_true, Y_pred): | |
label2num = dict((name, i) for i, name in enumerate(sorted(set(y_true)))) | |
return -1 * sum(math.log(y[label2num[label]]) if y[label2num[label]] > 0 else -np.inf for y, label in zip(Y_pred, y_true)) / len(Y_pred) | |
I'am sorry, but does this make it able to get non-strict(proba) predictions from xgBoost?
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
TODO: regression