Created
October 24, 2014 08:29
-
-
Save sld/4226c8ff9ff474dde0a5 to your computer and use it in GitHub Desktop.
Statistics' tasks
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# coding: utf-8 | |
import numpy as np | |
import cmath as math | |
import scipy.stats as stats | |
import random | |
def generate_exponential(exp_lambda, size): | |
scale = 1 / exp_lambda | |
return np.random.exponential(scale, size) | |
def exponential_mean(exp_lambda): | |
return 1 / exp_lambda | |
def exponential_variance(exp_lambda): | |
return exponential_mean(exp_lambda)**2 | |
def sample_variance(sample): | |
diff = sum([(x - sample.mean())**2 for x in sample]) | |
return (1.0 / (len(sample) - 1)) * diff | |
def noncentral_student(df, noncentral, size_ = 1): | |
return stats.nct.rvs(df, noncentral, size=size_) | |
def combination_of_distributions(size, conditioner = 0.1): | |
result = [] | |
for i in range(0, size): | |
is_exp = (1 - conditioner) >= random.random() | |
if is_exp: | |
result.append(generate_exponential(0.25, 1)[0]) | |
else: | |
result.append(noncentral_student(3, 4, 1)[0]) | |
return np.array(result) | |
def confidential_interval(sample): | |
low = sample.mean() - 3*sample_variance(sample) / math.sqrt( len(sample) ) | |
high = sample.mean() + 3*sample_variance(sample) / math.sqrt( len(sample) ) | |
return [low, high] | |
def is_mean_in_conf_interval(conf_interval, mean): | |
return (mean >= conf_interval[0] and mean <= conf_interval[1]) | |
def task1(): | |
size = 8 | |
exp_lambda = 0.25 | |
sample = generate_exponential(exp_lambda, size) | |
print "Sample: " + str(sample) | |
print "Sample mean: " + str(sample.mean()) | |
print "Sample variance: " + str(sample_variance(sample)) | |
mean = exponential_mean(exp_lambda) | |
print "Theoretical mean: " + str(mean) | |
print "Theoretical variance: " + str(exponential_variance(exp_lambda)) | |
conf_interval = confidential_interval(sample) | |
print "Condidence interval: " + str(conf_interval) | |
print "Mean in conf interval: " + str(is_mean_in_conf_interval(conf_interval, mean)) | |
def task2(): | |
size = 8000 | |
exp_lambda = 0.25 | |
conditioner = 0.05 | |
for i in range(0,4): | |
conditioner = conditioner*2 | |
print "conditioner is " + str(conditioner) | |
sample = combination_of_distributions(size, conditioner) | |
# print sample | |
print "Sample mean: " + str(sample.mean()) | |
print "Sample variance: " + str(sample_variance(sample)) | |
mean = exponential_mean(exp_lambda) | |
print "Theoretical mean: " + str(mean) | |
conf_interval = confidential_interval(sample) | |
print "Condidence interval: " + str(conf_interval) | |
print "Mean in conf interval: " + str(is_mean_in_conf_interval(conf_interval, mean)) | |
print "\n" | |
def task3(): | |
h0_m = -1 | |
h0_s = 1 | |
h1_m = -9 | |
h1_s = 3 | |
vec = np.random.uniform(-18, 2, 6) | |
norms = np.random.normal(h0_m, h0_s) | |
print vec | |
print norms | |
# Uncomplete yet | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment