Last active
October 15, 2018 08:50
-
-
Save sliekens/7e9d7c8914909d32edd7cc92c284a3d6 to your computer and use it in GitHub Desktop.
Inspired by https://www.di-mgt.com.au/rsa_factorize_n.html
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
private static (BigInteger, BigInteger) RecoverPrimeFactors(BigInteger n, BigInteger e, BigInteger d) | |
{ | |
// Inspired by https://www.di-mgt.com.au/rsa_factorize_n.html | |
var k = BigInteger.Subtract(BigInteger.Multiply(d, e), BigInteger.One); | |
var primes = new List<int> | |
{ | |
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, | |
31, 37, 41, 43, 47, 53, 59, 61, 67, 71, | |
73, 79, 83, 89, 97, 101, 103, 107, 109, 113, | |
127, 131, 137, 139, 149, 151, 157, 163, 167, 173, | |
179, 181, 191, 193, 197, 199, 211, 223, 227, 229, | |
233, 239, 241, 251, 257, 263, 269, 271, 277, 281 | |
}; | |
foreach (var g in primes) | |
{ | |
var t = k; | |
BigInteger x; | |
while (t.IsEven) | |
{ | |
t = BigInteger.Divide(t, 2); | |
x = BigInteger.ModPow(g, t, n); | |
if (x > BigInteger.One) | |
{ | |
var y = BigInteger.GreatestCommonDivisor(BigInteger.Subtract(x, BigInteger.One), n); | |
if (y > BigInteger.One) | |
{ | |
var p = y; | |
var q = BigInteger.Divide(n, y); | |
if (q > p) | |
{ | |
return (q, p); | |
} | |
return (p, q); | |
} | |
} | |
} | |
} | |
throw new Exception("Giving up, consider adding larger primes for 'g'"); | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment