Created
January 10, 2017 15:28
-
-
Save slinderman/31fdf5acdc0affdf4dc60670069d314a to your computer and use it in GitHub Desktop.
Sample predictions test
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
from pylds.models import DefaultLDS | |
inputs = \ | |
np.array([[ 0. , 0. ], | |
[ 2.72785283, 7.53608657], | |
[ 0. , 7.23201033], | |
[ 2.0261219 , 7.07866193], | |
[ 2.42989525, 7.67644583], | |
[ 2.80870737, 7.83475645], | |
[ 0. , 7.9209767 ], | |
[ 0. , 7.79186987], | |
[ 2.78714571, 8.37162161], | |
[ 2.49732917, 8.14119562], | |
[ 2.71444 , 7.94740989], | |
[ 2.54583288, 8.05844122], | |
[ 2.51490101, 8.18854467], | |
[ 1.61097519, 7.88220925], | |
[ 2.58138165, 7.85400085], | |
[ 2.45695553, 7.71646971], | |
[ 2.86483477, 7.96989029]]) | |
data = \ | |
np.array([[ 7.53608657], | |
[ 7.23201033], | |
[ 7.07866193], | |
[ 7.67644583], | |
[ 7.83475645], | |
[ 7.9209767 ], | |
[ 7.79186987], | |
[ 8.37162161], | |
[ 8.14119562], | |
[ 7.94740989], | |
[ 8.05844122], | |
[ 8.18854467], | |
[ 7.88220925], | |
[ 7.85400085], | |
[ 7.71646971], | |
[ 7.96989029], | |
[ 7.68803383]]) | |
offset = data.mean(axis=0) | |
data -= offset | |
model = DefaultLDS(D_obs=1, D_latent=2, D_input=2) | |
model.add_data(data, inputs=inputs) | |
for _ in range(50): | |
model.EM_step() | |
T_given = 13 | |
T_predict = 4 | |
given_data = data[:T_given] | |
given_inputs = inputs[:T_given] | |
smooth_data = model.smooth(given_data, given_inputs) | |
preds = \ | |
model.sample_predictions( | |
given_data, inputs=given_inputs, | |
Tpred=T_predict, | |
inputs_pred=inputs[T_given:T_given + T_predict], | |
states_noise=False, obs_noise=False) | |
smooth_plus_pred = np.concatenate((smooth_data, preds)) | |
plt.plot(data, label="true") | |
plt.plot(smooth_plus_pred[:T_given], label="smoothed") | |
plt.plot(np.arange(T_given-1, T_given+T_predict), smooth_plus_pred[T_given-1:], label="pred") | |
plt.xlabel("Time") | |
plt.ylabel("Data") | |
plt.legend(loc="upper left") | |
ylim = plt.ylim() | |
plt.plot([T_given-1, T_given-1], ylim, '-k') | |
plt.ylim(ylim) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment