Last active
July 15, 2020 08:25
-
-
Save slitayem/f49ccb137c1c53c89bce904edfdc6543 to your computer and use it in GitHub Desktop.
Plot annotated confusion matrix for binary classifier
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import seaborn as sns | |
import matplotlib.pyplot as plt | |
from sklearn.metrics import confusion_matrix | |
import numpy as np | |
def plot_confusion_matrix(cf_matrix, target_names=None): | |
"""Plot annotated confusion matrix with absolute values and percentages | |
Args: | |
cf_matrix: ndarray of shape (2, 2) Confusion Matrix | |
""" | |
group_names = ['TN', 'FP', 'FN', 'TP'] | |
group_counts = ["{0:.0f}".format(value) for value in | |
cf_matrix.flatten()] | |
group_percentages = ["{0:.2%}".format(value) for value in | |
cf_matrix.flatten()/np.sum(cf_matrix)] | |
labels = [f"{v1}\n{v2}\n{v3}" for v1, v2, v3 in | |
zip(group_names, | |
group_counts, | |
group_percentages) | |
] | |
labels = np.asarray(labels).reshape(2, 2) | |
plt.figure(figsize = (8, 6)) | |
sns.heatmap(cf_matrix, annot=labels, fmt='', cmap='Blues', annot_kws={"size": 14}) | |
if target_names: | |
tick_marks = range(len(target_names)) | |
plt.xticks(tick_marks, target_names) | |
plt.yticks(tick_marks, target_names) | |
precision = cf_matrix[1, 1] / sum(cf_matrix[:, 1]) | |
recall = cf_matrix[1, 1] / sum(cf_matrix[1,:]) | |
accuracy = np.trace(cf_matrix) / float(np.sum(cf_matrix)) | |
f1_score = 2 * precision * recall / (precision + recall) | |
stats_text = "Precision.={:0.3f}\nRecall{:0.3f}\n\nAccuracy={:0.3f}\nF1 Score={:0.3f}".format( | |
precision, recall, accuracy, f1_score) | |
plt.xlabel('Predicted label {}'.format(stats_text)) | |
plt.ylabel("True Label") | |
plt.show() | |
conf_matrix = confusion_matrix(y_label, pred_label) | |
plot_confusion_matrix(conf_matrix, target_names=['c1', 'c2']) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment