-
-
Save slmyers/fc3ae96093719c2f66779f0574cc6555 to your computer and use it in GitHub Desktop.
Median of medians selection algorithm
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
int find_kth(int *v, int n, int k) { | |
if (n == 1 && k == 0) return v[0]; | |
int m = (n + 4)/5; | |
int *medians = new int[m]; | |
for (int i=0; i<m; i++) { | |
if (5*i + 4 < n) { | |
int *w = v + 5*i; | |
for (int j0=0; j0<3; j0++) { | |
int jmin = j0; | |
for (int j=j0+1; j<5; j++) { | |
if (w[j] < w[jmin]) jmin = j; | |
} | |
swap(w[j0], w[jmin]); | |
} | |
medians[i] = w[2]; | |
} else { | |
medians[i] = v[5*i]; | |
} | |
} | |
int pivot = find_kth(medians, m, m/2); | |
delete [] medians; | |
for (int i=0; i<n; i++) { | |
if (v[i] == pivot) { | |
swap(v[i], v[n-1]); | |
break; | |
} | |
} | |
int store = 0; | |
for (int i=0; i<n-1; i++) { | |
if (v[i] < pivot) { | |
swap(v[i], v[store++]); | |
} | |
} | |
swap(v[store], v[n-1]); | |
if (store == k) { | |
return pivot; | |
} else if (store > k) { | |
return find_kth(v, store, k); | |
} else { | |
return find_kth(v+store+1, n-store-1, k-store-1); | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment