Created
September 1, 2023 12:47
-
-
Save sloonz/15491bf13c8df3c1bbe9cd96b04537b6 to your computer and use it in GitHub Desktop.
mixture density network with tensorflow
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import math | |
import numpy as np | |
import tensorflow as tf | |
data = np.zeros((1000, 500)) | |
def get_mdn_loss(n_kernels, n_dims): | |
def mdn_loss(y_true, y_pred): | |
logit_alpha, log_scale, mu = tf.split(y_pred, axis=1, num_or_size_splits=[n_kernels, n_kernels, n_dims*n_kernels]) | |
alpha = tf.nn.softmax(logit_alpha) | |
scale = tf.math.exp(log_scale) | |
var = tf.square(scale) | |
mu = tf.reshape(mu, (-1, n_kernels, n_dims)) # (batch_size, n_dims*n_kernels) -> (batch_size, n_kernels, n_dims) | |
y_true = tf.reshape(y_true, (-1, 1, n_dims)) # (batch_size, n_dims) -> (batch_size, 1, n_dims), now broadcast is possible | |
gaussian_normalization = tf.math.pow(2*math.pi*var, -0.5*n_dims) | |
gaussian_unnormalized = tf.exp(-0.5 * tf.reduce_sum((y_true - mu)**2, axis=2) / var) | |
likelihood = tf.reduce_sum(alpha * gaussian_normalization * gaussian_unnormalized, axis=1) | |
return tf.reduce_mean(-tf.math.log(likelihood)) | |
return mdn_loss | |
def get_mixture(v): | |
beta = 4*(v-1/2)**2 | |
gamma = 1/(1+np.exp(-10*(v-1/2))) | |
delta_v = 0.05 + 0.2*beta**2 | |
return (1 - gamma, | |
v + delta_v, | |
v - delta_v, | |
delta_v / 10, | |
delta_v / 10) | |
data[:, 0] = np.random.uniform(size=data.shape[0]) | |
for i in range(1, data.shape[1]): | |
v_prev = data[:, i-1] | |
(alpha, mu1, mu2, scale1, scale2) = get_mixture(v_prev) | |
v_next_1 = np.random.normal(mu1, scale1) | |
v_next_2 = np.random.normal(mu2, scale2) | |
v_next = np.where(np.random.uniform(size=v_prev.shape[0]) < alpha, v_next_1, v_next_2) | |
data[:, i] = np.clip(v_next, 0, 1) | |
X = data[:, :-1].flatten().astype(np.float32) | |
Y = data[:, 1:].flatten().astype(np.float32) | |
n_dims = 1 | |
n_kernels = 2 | |
model = tf.keras.models.Sequential() | |
model.add(tf.keras.Input(shape=(1,))) | |
model.add(tf.keras.layers.Dense(32, activation="tanh")) | |
model.add(tf.keras.layers.BatchNormalization()) | |
model.add(tf.keras.layers.Dense(32, activation="relu")) | |
model.add(tf.keras.layers.Dense(n_kernels*(2+n_dims))) | |
model.compile(optimizer="Adam", loss=get_mdn_loss(n_kernels=n_kernels, n_dims=n_dims)) | |
model.summary() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment