Last active
          August 28, 2024 13:03 
        
      - 
      
- 
        Save slopp/ad09cb7002c4dff899e3989e5f991c8e to your computer and use it in GitHub Desktop. 
    Palmer ML Workflow with Dagster
  
        
  
    
      This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
      Learn more about bidirectional Unicode characters
    
  
  
    
  | import datetime | |
| import pins | |
| import os | |
| import seaborn as sns | |
| from dagster import asset, asset_check, AssetCheckResult | |
| from posit import connect # install as uv pip install posit-sdk | |
| from sklearn.linear_model import LogisticRegression | |
| from sklearn.model_selection import train_test_split | |
| from sklearn.pipeline import Pipeline | |
| from sklearn.preprocessing import LabelEncoder, StandardScaler | |
| CONNECT_SERVER = os.getenv("CONNECT_SERVER") | |
| CONNECT_API_KEY = os.getenv("CONNECT_API_KEY") | |
| CONNECT_USER_NAME = "USER_NAME" | |
| CONNECT_CONTENT_GUID = "CONTENT_GUID" | |
| @asset | |
| def prepared_data(): | |
| penguins = sns.load_dataset("penguins", cache=False) | |
| penguins = penguins.dropna() | |
| encoder = LabelEncoder() | |
| penguins["species"] = encoder.fit_transform(penguins["species"]) | |
| return {"penguins": penguins, "encoder": encoder} | |
| @asset | |
| def trained_model(prepared_data): | |
| penguins = prepared_data["penguins"] | |
| encoder = prepared_data["encoder"] | |
| X = penguins[ | |
| ["bill_length_mm", "bill_depth_mm", "flipper_length_mm", "body_mass_g"] | |
| ] | |
| y = penguins["species"] | |
| X_train, X_test, y_train, y_test = train_test_split( | |
| X, y, test_size=0.2, random_state=0 | |
| ) | |
| pipeline = Pipeline([("scaler", StandardScaler()), ("model", LogisticRegression())]) | |
| pipeline.fit(X_train, y_train) | |
| return {"pipeline": pipeline, "encoder": encoder, "X_test": X_test, "y_test": y_test} | |
| @asset_check( | |
| asset=trained_model | |
| ) | |
| def evaluate_model(trained_model): | |
| pipeline = trained_model["pipeline"] | |
| X_test = trained_model["X_test"] | |
| y_test = trained_model["y_test"] | |
| score = pipeline.score(X_test, y_test) | |
| print(f"Model score: {score}") | |
| return AssetCheckResult( | |
| passed=score >=0.9 | |
| ) | |
| @asset | |
| def deployed_model(trained_model): | |
| print("Deploying model") | |
| encoder = trained_model["encoder"] | |
| pipeline = trained_model["pipeline"] | |
| board = pins.board_connect(CONNECT_SERVER, api_key=CONNECT_API_KEY, cache=None, allow_pickle_read=True) | |
| board.pin_write(encoder, name=f"{CONNECT_USER_NAME}/encoder", type="joblib") | |
| board.pin_write(pipeline, name=f"{CONNECT_USER_NAME}/pipeline", type="joblib") | |
| return | |
| @asset( | |
| deps=[deployed_model] | |
| ) | |
| def the_app(): | |
| #client = connect.Client(CONNECT_SERVER, CONNECT_API_KEY) | |
| #content = client.content.get(CONNECT_CONTENT_GUID) | |
| #print(f"Restarting {content.dashboard_url}") | |
| #content.restart() | |
| ... | 
      
      
  Author
  
  
        
      
            slopp
  
      
      
      commented 
        Aug 21, 2024 
      
    
  
 
    
  
    Sign up for free
    to join this conversation on GitHub.
    Already have an account?
    Sign in to comment