-
-
Save slowkow/06c6dba9180d013dfd82bec217d22eb5 to your computer and use it in GitHub Desktop.
#!/usr/bin/env python | |
""" | |
The Needleman-Wunsch Algorithm | |
============================== | |
This is a dynamic programming algorithm for finding the optimal alignment of | |
two strings. | |
Example | |
------- | |
>>> x = "GATTACA" | |
>>> y = "GCATGCU" | |
>>> print(nw(x, y)) | |
G-ATTACA | |
GCA-TGCU | |
LICENSE | |
This is free and unencumbered software released into the public domain. | |
Anyone is free to copy, modify, publish, use, compile, sell, or | |
distribute this software, either in source code form or as a compiled | |
binary, for any purpose, commercial or non-commercial, and by any | |
means. | |
In jurisdictions that recognize copyright laws, the author or authors | |
of this software dedicate any and all copyright interest in the | |
software to the public domain. We make this dedication for the benefit | |
of the public at large and to the detriment of our heirs and | |
successors. We intend this dedication to be an overt act of | |
relinquishment in perpetuity of all present and future rights to this | |
software under copyright law. | |
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | |
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | |
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. | |
IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR | |
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, | |
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR | |
OTHER DEALINGS IN THE SOFTWARE. | |
For more information, please refer to <http://unlicense.org/> | |
""" | |
import numpy as np | |
def nw(x, y, match = 1, mismatch = 1, gap = 1): | |
nx = len(x) | |
ny = len(y) | |
# Optimal score at each possible pair of characters. | |
F = np.zeros((nx + 1, ny + 1)) | |
F[:,0] = np.linspace(0, -nx * gap, nx + 1) | |
F[0,:] = np.linspace(0, -ny * gap, ny + 1) | |
# Pointers to trace through an optimal aligment. | |
P = np.zeros((nx + 1, ny + 1)) | |
P[:,0] = 3 | |
P[0,:] = 4 | |
# Temporary scores. | |
t = np.zeros(3) | |
for i in range(nx): | |
for j in range(ny): | |
if x[i] == y[j]: | |
t[0] = F[i,j] + match | |
else: | |
t[0] = F[i,j] - mismatch | |
t[1] = F[i,j+1] - gap | |
t[2] = F[i+1,j] - gap | |
tmax = np.max(t) | |
F[i+1,j+1] = tmax | |
if t[0] == tmax: | |
P[i+1,j+1] += 2 | |
if t[1] == tmax: | |
P[i+1,j+1] += 3 | |
if t[2] == tmax: | |
P[i+1,j+1] += 4 | |
# Trace through an optimal alignment. | |
i = nx | |
j = ny | |
rx = [] | |
ry = [] | |
while i > 0 or j > 0: | |
if P[i,j] in [2, 5, 6, 9]: | |
rx.append(x[i-1]) | |
ry.append(y[j-1]) | |
i -= 1 | |
j -= 1 | |
elif P[i,j] in [3, 5, 7, 9]: | |
rx.append(x[i-1]) | |
ry.append('-') | |
i -= 1 | |
elif P[i,j] in [4, 6, 7, 9]: | |
rx.append('-') | |
ry.append(y[j-1]) | |
j -= 1 | |
# Reverse the strings. | |
rx = ''.join(rx)[::-1] | |
ry = ''.join(ry)[::-1] | |
return '\n'.join([rx, ry]) | |
x = "GATTACA" | |
y = "GCATGCU" | |
print(nw(x, y)) | |
# G-ATTACA | |
# GCA-TGCU | |
np.random.seed(42) | |
x = np.random.choice(['A', 'T', 'G', 'C'], 50) | |
y = np.random.choice(['A', 'T', 'G', 'C'], 50) | |
print(nw(x, y, gap = 0)) | |
# ----G-C--AGGCAAGTGGGGCACCCGTATCCT-T-T-C-C-AACTTACAAGGGT-C-CC-----CGT-T | |
# GTGCGCCAGAGG-AAGT----CA--C-T-T--TATATCCGCG--C--AC---GGTACTCCTTTTTC-TA- | |
print(nw(x, y, gap = 1)) | |
# GCAG-GCAAGTGG--GGCAC-CCGTATCCTTTC-CAAC-TTACAAGGGTCC-CCGT-T- | |
# G-TGCGCCAGAGGAAGTCACTTTATATCC--GCGC-ACGGTAC-----TCCTTTTTCTA | |
print(nw(x, y, gap = 2)) | |
# GCAGGCAAGTGG--GGCAC-CCGTATCCTTTCCAACTTACAAGGGTCCCCGTT | |
# GTGCGCCAGAGGAAGTCACTTTATATCC-GCGCACGGTAC-TCCTTTTTC-TA |
can you please tell me the changes i need to do in this code for finding the most optimal alignment cosidering Smith Watterman algorithm for local alignment ??
@ayush-mourya There are lot of resources online that you might want to look at. Don't give up, keep reading!
Here is one resource that seems relevant to your question: https://open.oregonstate.education/appliedbioinformatics/chapter/chapter-3/
(University websites are always a great starting point, try searching for queries like smith-waterman site:edu
to get results from universities.)
In the Needleman-Wunsch (global alignment) algorithm, we start from the bottom-right corner of the matrix, and we move upward and to the left, stopping in the top-left corner of the matrix. This ensures that we globally align all of the bases from the two sequences.
In the Smith-Waterman (local alignment) algorithm, we do not always start from the bottom-right corner of the matrix. Instead, we choose the maximum value from the bottom row or the right-most column. From that position, we proceed upward and to the left, but we can stop before we reach the top-left corner. This means we are interested in the local alignment of a subset of the first and second sequences, not the global alignment of the entirety of the two sequences.
I hope that helps! Good luck with your learning.
@JFOZ1010
Mantenemos la puntuación por coincidencia, no coincidencia y gap. La elección en cada posición depende de la mejor puntuación posible para la alineación global.
Podemos aumentar la puntuación no coincidente para evitar (A - T):
This R code is slow, but it might be useful for visualizing some examples of sequence alignments: https://gist.github.com/slowkow/508393
The score matrix
F
is represented with numbers.The pointer matrix
P
is represented with arrows pointing up, left, or up-left to indicate gaps (up or left) or match/mismatch (up-left).