-
-
Save slowkow/8101481 to your computer and use it in GitHub Desktop.
#!/usr/bin/env python | |
""" | |
GTF.py | |
Kamil Slowikowski | |
December 24, 2013 | |
Read GFF/GTF files. Works with gzip compressed files and pandas. | |
http://useast.ensembl.org/info/website/upload/gff.html | |
LICENSE | |
This is free and unencumbered software released into the public domain. | |
Anyone is free to copy, modify, publish, use, compile, sell, or | |
distribute this software, either in source code form or as a compiled | |
binary, for any purpose, commercial or non-commercial, and by any | |
means. | |
In jurisdictions that recognize copyright laws, the author or authors | |
of this software dedicate any and all copyright interest in the | |
software to the public domain. We make this dedication for the benefit | |
of the public at large and to the detriment of our heirs and | |
successors. We intend this dedication to be an overt act of | |
relinquishment in perpetuity of all present and future rights to this | |
software under copyright law. | |
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | |
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | |
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. | |
IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR | |
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, | |
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR | |
OTHER DEALINGS IN THE SOFTWARE. | |
For more information, please refer to <http://unlicense.org/> | |
""" | |
from collections import defaultdict | |
import gzip | |
import pandas as pd | |
import re | |
GTF_HEADER = ['seqname', 'source', 'feature', 'start', 'end', 'score', | |
'strand', 'frame'] | |
R_SEMICOLON = re.compile(r'\s*;\s*') | |
R_COMMA = re.compile(r'\s*,\s*') | |
R_KEYVALUE = re.compile(r'(\s+|\s*=\s*)') | |
def dataframe(filename): | |
"""Open an optionally gzipped GTF file and return a pandas.DataFrame. | |
""" | |
# Each column is a list stored as a value in this dict. | |
result = defaultdict(list) | |
for i, line in enumerate(lines(filename)): | |
for key in line.keys(): | |
# This key has not been seen yet, so set it to None for all | |
# previous lines. | |
if key not in result: | |
result[key] = [None] * i | |
# Ensure this row has some value for each column. | |
for key in result.keys(): | |
result[key].append(line.get(key, None)) | |
return pd.DataFrame(result) | |
def lines(filename): | |
"""Open an optionally gzipped GTF file and generate a dict for each line. | |
""" | |
fn_open = gzip.open if filename.endswith('.gz') else open | |
with fn_open(filename) as fh: | |
for line in fh: | |
if line.startswith('#'): | |
continue | |
else: | |
yield parse(line) | |
def parse(line): | |
"""Parse a single GTF line and return a dict. | |
""" | |
result = {} | |
fields = line.rstrip().split('\t') | |
for i, col in enumerate(GTF_HEADER): | |
result[col] = _get_value(fields[i]) | |
# INFO field consists of "key1=value;key2=value;...". | |
infos = [x for x in re.split(R_SEMICOLON, fields[8]) if x.strip()] | |
for i, info in enumerate(infos, 1): | |
# It should be key="value". | |
try: | |
key, _, value = re.split(R_KEYVALUE, info, 1) | |
# But sometimes it is just "value". | |
except ValueError: | |
key = 'INFO{}'.format(i) | |
value = info | |
# Ignore the field if there is no value. | |
if value: | |
result[key] = _get_value(value) | |
return result | |
def _get_value(value): | |
if not value: | |
return None | |
# Strip double and single quotes. | |
value = value.strip('"\'') | |
# Return a list if the value has a comma. | |
if ',' in value: | |
value = re.split(R_COMMA, value) | |
# These values are equivalent to None. | |
elif value in ['', '.', 'NA']: | |
return None | |
return value |
Hi @hindlem, thanks for the suggestions -- they're now in my code.
(I didn't notice your comment until now because github doesn't notify the gist author about comments.)
Pretty awesome code! Going to put it into my lib!
Might I suggest pandas instead?
GFF3 = pd.read_csv(
filepath_or_buffer=gff3_dir + 'Saccharomyces_cerevisiae.R64-1-1.91.gff3',
sep='\t',
header=None,
names=['seqid', 'source', 'type', 'start', 'end', 'score', 'strand', 'phase', 'attributes'],
skiprows=[i for i in xrange(25)])
GFF3 = GFF3[GFF3['source'].notnull()]
Dylan, my code should be able to handle lots of different types of GTF or GFF files and automatically parse the key=value
items. The pandas read_csv
function will not do this.
pyranges parses and outputs gtf/gff.
Example:
Install instructions:
# pip install pyranges
# or
# conda install -c bioconda pyranges
Example file:
# !head ensembl.gtf
# #!genome-build GRCh38.p10
# #!genome-version GRCh38
# #!genome-date 2013-12
# #!genome-build-accession NCBI:GCA_000001405.25
# #!genebuild-last-updated 2017-06
# 1 havana gene 11869 14409 . + . gene_id "ENSG00000223972"; gene_version "5"; gene_name "DDX11L1"; gene_source "havana"; gene_biotype "transcribed_unprocessed_pseudogene";
# 1 havana transcript 11869 14409 . + . gene_id "ENSG00000223972"; gene_version "5"; transcript_id "ENST00000456328"; transcript_version "2"; gene_name "DDX11L1"; gene_source "havana"; gene_biotype "transcribed_unprocessed_pseudogene"; transcript_name "DDX11L1-202"; transcript_source "havana"; transcript_biotype "processed_transcript"; tag "basic"; transcript_support_level "1";
# 1 havana exon 11869 12227 . + . gene_id "ENSG00000223972"; gene_version "5"; transcript_id "ENST00000456328"; transcript_version "2"; exon_number "1"; gene_name "DDX11L1"; gene_source "havana"; gene_biotype "transcribed_unprocessed_pseudogene"; transcript_name "DDX11L1-202"; transcript_source "havana"; transcript_biotype "processed_transcript"; exon_id "ENSE00002234944"; exon_version "1"; tag "basic"; transcript_support_level "1";
# 1 havana exon 12613 12721 . + . gene_id "ENSG00000223972"; gene_version "5"; transcript_id "ENST00000456328"; transcript_version "2"; exon_number "2"; gene_name "DDX11L1"; gene_source "havana"; gene_biotype "transcribed_unprocessed_pseudogene"; transcript_name "DDX11L1-202"; transcript_source "havana"; transcript_biotype "processed_transcript"; exon_id "ENSE00003582793"; exon_version "1"; tag "basic"; transcript_support_level "1";
# 1 havana exon 13221 14409 . + . gene_id "ENSG00000223972"; gene_version "5"; transcript_id "ENST00000456328"; transcript_version "2"; exon_number "3"; gene_name "DDX11L1"; gene_source "havana"; gene_biotype "transcribed_unprocessed_pseudogene"; transcript_name "DDX11L1-202"; transcript_source "havana"; transcript_biotype "processed_transcript"; exon_id "ENSE00002312635"; exon_version "1"; tag "basic"; transcript_support_level "1";
Using pyranges:
import pyranges as pr
# as PyRanges-object
gr = pr.read_gtf("ensembl.gtf")
# +--------------+------------+--------------+-----------+-----------+------------+--------------+------------+-----------------+----------------+-------------+----------------+------------------------------------+-----------------+----------------------+-------+
# | Chromosome | Source | Feature | Start | End | Score | Strand | Frame | gene_id | gene_version | gene_name | gene_source | gene_biotype | transcript_id | transcript_version | +13 |
# | (category) | (object) | (category) | (int32) | (int32) | (object) | (category) | (object) | (object) | (object) | (object) | (object) | (object) | (object) | (object) | ... |
# |--------------+------------+--------------+-----------+-----------+------------+--------------+------------+-----------------+----------------+-------------+----------------+------------------------------------+-----------------+----------------------+-------|
# | 1 | havana | gene | 11869 | 14409 | . | + | . | ENSG00000223972 | 5 | DDX11L1 | havana | transcribed_unprocessed_pseudogene | nan | nan | ... |
# | 1 | havana | transcript | 11869 | 14409 | . | + | . | ENSG00000223972 | 5 | DDX11L1 | havana | transcribed_unprocessed_pseudogene | ENST00000456328 | 2 | ... |
# | 1 | havana | exon | 11869 | 12227 | . | + | . | ENSG00000223972 | 5 | DDX11L1 | havana | transcribed_unprocessed_pseudogene | ENST00000456328 | 2 | ... |
# | 1 | havana | exon | 12613 | 12721 | . | + | . | ENSG00000223972 | 5 | DDX11L1 | havana | transcribed_unprocessed_pseudogene | ENST00000456328 | 2 | ... |
# | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
# | 1 | ensembl | transcript | 120725 | 133723 | . | - | . | ENSG00000238009 | 6 | AL627309.1 | ensembl_havana | lincRNA | ENST00000610542 | 1 | ... |
# | 1 | ensembl | exon | 133374 | 133723 | . | - | . | ENSG00000238009 | 6 | AL627309.1 | ensembl_havana | lincRNA | ENST00000610542 | 1 | ... |
# | 1 | ensembl | exon | 129055 | 129223 | . | - | . | ENSG00000238009 | 6 | AL627309.1 | ensembl_havana | lincRNA | ENST00000610542 | 1 | ... |
# | 1 | ensembl | exon | 120874 | 120932 | . | - | . | ENSG00000238009 | 6 | AL627309.1 | ensembl_havana | lincRNA | ENST00000610542 | 1 | ... |
# +--------------+------------+--------------+-----------+-----------+------------+--------------+------------+-----------------+----------------+-------------+----------------+------------------------------------+-----------------+----------------------+-------+
# Stranded PyRanges object has 95 rows and 28 columns from 1 chromosomes.
# For printing, the PyRanges was sorted on Chromosome and Strand.
# 13 hidden columns: transcript_name, transcript_source, transcript_biotype, tag, transcript_support_level, exon_number, exon_id, exon_version, (assigned, previous, ccds_id, protein_id, protein_version
# as DataFrame
df = gr.df
# Chromosome Source Feature Start End Score Strand Frame gene_id gene_version gene_name ... transcript_biotype tag transcript_support_level exon_number exon_id exon_version (assigned previous ccds_id protein_id protein_version
# 0 1 havana gene 11869 14409 . + . ENSG00000223972 5 DDX11L1 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
# 1 1 havana transcript 11869 14409 . + . ENSG00000223972 5 DDX11L1 ... processed_transcript basic 1 NaN NaN NaN NaN NaN NaN NaN NaN
# 2 1 havana exon 11869 12227 . + . ENSG00000223972 5 DDX11L1 ... processed_transcript basic 1 1 ENSE00002234944 1 NaN NaN NaN NaN NaN
# 3 1 havana exon 12613 12721 . + . ENSG00000223972 5 DDX11L1 ... processed_transcript basic 1 2 ENSE00003582793 1 NaN NaN NaN NaN NaN
# 4 1 havana exon 13221 14409 . + . ENSG00000223972 5 DDX11L1 ... processed_transcript basic 1 3 ENSE00002312635 1 NaN NaN NaN NaN NaN
# .. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
# 90 1 havana exon 110953 111357 . - . ENSG00000238009 6 AL627309.1 ... lincRNA NaN 5 3 ENSE00001879696 1 NaN NaN NaN NaN NaN
# 91 1 ensembl transcript 120725 133723 . - . ENSG00000238009 6 AL627309.1 ... lincRNA basic 5 NaN NaN NaN NaN NaN NaN NaN NaN
# 92 1 ensembl exon 133374 133723 . - . ENSG00000238009 6 AL627309.1 ... lincRNA basic 5 1 ENSE00003748456 1 NaN NaN NaN NaN NaN
# 93 1 ensembl exon 129055 129223 . - . ENSG00000238009 6 AL627309.1 ... lincRNA basic 5 2 ENSE00003734824 1 NaN NaN NaN NaN NaN
# 94 1 ensembl exon 120874 120932 . - . ENSG00000238009 6 AL627309.1 ... lincRNA basic 5 3 ENSE00003740919 1 NaN NaN NaN NaN NaN
#
# [95 rows x 28 columns]
Thank you so much. I am very impressed by your code.
I am new to Linux/Unix though. Could you let me know a Linux terminal command to execute your code interacting with the gtf.gz file?
It will be greatly appreciated! Thank you.
Hi, thank you so much for your prompt response.
I did save your code as GTF.py and I also created a new file, init_gtf.py, including the last two commands:
import GTF
df = GTF.dataframe("myfilename.gtf.gz")
And I run the codes with a linux command: python init_gtf.py
But, after the init_gtf.py is complete with running, I was not able to see any result.
Could you advise me how I can see the result from your code?
My goal is to count how many genes are annotated in my gtf.gz file, and I found your code for the reference.
Since I am not familiar with both linux and python, I am struggling a lot.
Please advise me. I really do appreciate your time and efforts.
Thank you so much!
@sallyey You might consider asking for help on https://www.biostars.org
There, many people ask for help and provide answers every day. Hundreds of people will see your question, and some of them might offer suggestions.
Make sure you describe your problem, your goals, what you have tried, and what went wrong. The more information you provide, the more likely it is that other people will understand what you are hoping to do.
Good luck!
Thanks so much!
Nice code two suggestions.
Line 70 causes problems when the key:value pair sequence ends in a ; leaving a blank string at the end of infos
infos = [x for x in re.split(R_SEMICOLON, fields[8]) if len(x.strip()) > 0]
Line 75 fails when there is a \s in a value...this is easily fixed by restricting the split to the first instance
key, _, value = re.split(R_KEYVALUE, info, 1)