-
-
Save smasongarrison/2be337175874401e89191942a1a588e2 to your computer and use it in GitHub Desktop.
Code to generate wallpaper (bivariate normal distribution)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(mvtnorm) | |
### correlation for the bivariate normal distribution | |
rho <- 0.4 | |
### number of points for x and y at which to evaluate the density of the bivariate normal distribution | |
n <- 501 | |
sigma <- matrix(c(1,rho,rho,1), nrow=2) | |
x <- seq(-3, 3, length=n) | |
y <- seq(-3, 3, length=n) | |
z <- matrix(NA, nrow=n, ncol=n) | |
for (i in seq_along(x)) { | |
for (j in seq_along(y)) { | |
z[i,j] <- dmvnorm(c(x[i],y[j]), sigma=sigma) | |
} | |
} | |
### used width and height equal to twice the resolution, which looks nice (but adapt as needed) | |
jpeg("bivariate_normal.jpg", width=2732, height=1536, quality=95, bg="gray10", type="cairo") | |
### contour plot | |
par(mar=c(0,0,15,0)) | |
lvls <- c(seq(.02, .20, by=.01)) | |
cols <- colorRampPalette(c("gray25", "gray95"))(length(lvls)) | |
contour(z=z, axes=F, drawlabels=FALSE, levels=lvls, col=cols) | |
par(new=TRUE) | |
### bivariate normal surface | |
par(mar=c(13,0,9,0)) | |
nrz <- nrow(z) | |
ncz <- ncol(z) | |
jet.colors <- colorRampPalette(c(rgb(36,36,36,maxColorValue=255), "gray80")) | |
nbcol <- 1000 | |
color <- jet.colors(nbcol) | |
zfacet <- z[-1, -1] + z[-1, -ncz] + z[-nrz, -1] + z[-nrz, -ncz] | |
facetcol <- cut(zfacet, nbcol) | |
persp(x, y, z, theta=45, phi=30, r=10, box=FALSE, shade=0.3, col=color[facetcol], border=NA, expand=0.6, ltheta=-180, lphi=-10) | |
### add pdf text | |
text(0, 0.07, col="gray70", pos=1, cex=2.6, | |
expression(frac(1, 2 ~ pi ~ sigma[x] ~ sigma[y] ~ sqrt(1 - rho^2)) ~ | |
exp ~ bgroup("[", -frac(1,2*(1-rho^2)) ~ bgroup("(", frac((x-mu[x])^2, sigma[x]^2) ~ + ~ | |
frac((y-mu[y])^2, sigma[y]^2) ~ - ~ | |
frac(2 ~ rho ~ (x-mu[x]) ~ (y-mu[y]), sigma[x] ~ sigma[y]), | |
")"), | |
"]") | |
) | |
) | |
dev.off() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment