Skip to content

Instantly share code, notes, and snippets.

@smathot
Created April 29, 2015 09:22
Show Gist options
  • Save smathot/df854768723c4f9e5921 to your computer and use it in GitHub Desktop.
Save smathot/df854768723c4f9e5921 to your computer and use it in GitHub Desktop.
distribution
#!/usr/bin/env python
from matplotlib import pyplot as plt
from exparser import TraceKit as tk
import numpy as np
def findPeak(a, searchRange, smoothing=201, N=1000, plot=False):
"""
desc:
Get the peak of a series of data.
arguments:
a:
desc: The data as a 1D array.
type: ndarray
searchRange:
desc: The range to search in as a (min, max) tuple.
type: tuple
smoothing:
desc: A smoothing value in case the data is rough.
type: int
N:
desc: The resolution of the density plot used to find the peak.
type: N
plot:
desc: Indicates whether a debug plot should be shown.
type: bool
returns:
desc: The peak of the distribution.
type: float
"""
# Create a cumulative distribution
a.sort()
ax = np.linspace(searchRange[0], searchRange[1], N)
ay = np.empty(N)
for i, x in enumerate(ax):
y = np.sum(a <= x)
ay[i] = y
# Smooth the cumulative distribution
asy = tk.smooth(ay, windowLen=smoothing)
# Get the derivative of the cumulative distribution
adx = .5*(ax[1:]+ax[:-1])
ady = np.abs(asy[1:]-asy[:-1])
# Get the peak (or through)
iMax = np.where(ady == np.max(ady))[0]
xMax = adx[iMax]
if plot:
plt.subplot(2,1,1)
plt.plot(ax, ay, color='green')
# Plot the smoothed
plt.plot(ax, asy, color='blue')
plt.subplot(2,1,2)
plt.plot(adx, ady, color='red')
plt.axvline(xMax)
plt.show()
return xMax
# Generate data
a = np.random.normal(0, .5, size=100)
peak = findPeak(a, (-2, 2), plot=True)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment