Created
October 17, 2011 01:53
-
-
Save smc77/1291757 to your computer and use it in GitHub Desktop.
Linear regression gradient descent.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Load data and initialize values | |
data <- read.csv("http://www.statalgo.com/wp-content/uploads/2011/10/housing.csv") | |
alpha <- 0.01 | |
m <- nrow(data) | |
x <- matrix(c(rep(1,m), data$area), ncol=2) | |
y <- matrix(data$price, ncol=1) / 1000 | |
# Z-Score the feature | |
x.scaled <- x | |
x.scaled[,2] <- (x[,2] - mean(x[,2]))/sd(x[,2]) | |
# Gradient descent function | |
grad <- function(x, y, theta) { | |
gradient <- (t(x) %*% ((x %*% t(theta)) - y)) | |
return(t(gradient)) | |
} | |
gradient.path <- function(x) { | |
# Initialize the parameters | |
theta <- matrix(c(0, 0), nrow=1) | |
# Look at the values over each iteration | |
theta.path <- matrix(ncol=2) | |
for (i in 1:500) { | |
theta <- theta - alpha * 1/m * grad(x, y, theta) | |
if(all(is.na(theta))) break | |
theta.path <- rbind(theta.path, theta) | |
} | |
theta.path | |
} | |
unscaled.theta <- gradient.path(x) | |
scaled.theta <- gradient.path(x.scaled) | |
summary(lm(y ~ x[, 2])) | |
summary(lm(y ~ x.scaled[, 2])) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment