Created
October 28, 2011 03:14
-
-
Save smc77/1321542 to your computer and use it in GitHub Desktop.
Logistic Regression with Gradient Descent
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
num.iterations <- 1000 | |
# Download South African heart disease data | |
sa.heart <- read.table("http://www-stat.stanford.edu/~tibs/ElemStatLearn/datasets/SAheart.data", sep=",",head=T,row.names=1) | |
x <- sa.heart[,c("age", "ldl")] | |
y <- sa.heart$chd | |
plot(x, pch=21, bg=c("red","green")[factor(y)]) | |
# Function to standardize input values | |
zscore <- function(x, mean.val=NA) { | |
if(is.matrix(x)) return(apply(x, 2, zscore, mean.val=mean.val)) | |
if(is.data.frame(x)) return(data.frame(apply(x, 2, zscore, mean.val=mean.val))) | |
if(is.na(mean.val)) mean.val <- mean(x) | |
sd.val <- sd(x) | |
if(all(sd.val == 0)) return(x) # if all the values are the same | |
(x - mean.val) / sd.val | |
} | |
# Standardize the features | |
x.scaled <- zscore(x) | |
# Gradient descent function | |
grad <- function(x, y, theta) { | |
gradient <- (1 / nrow(y)) * (t(x) %*% (1/(1 + exp(-x %*% t(theta))) - y)) | |
return(t(gradient)) | |
} | |
gradient.descent <- function(x, y, alpha=0.1, num.iterations=500, threshold=1e-5, output.path=FALSE) { | |
# Add x_0 = 1 as the first column | |
m <- if(is.vector(x)) length(x) else nrow(x) | |
if(is.vector(x) || (!all(x[,1] == 1))) x <- cbind(rep(1, m), x) | |
if(is.vector(y)) y <- matrix(y) | |
x <- apply(x, 2, as.numeric) | |
num.features <- ncol(x) | |
# Initialize the parameters | |
theta <- matrix(rep(0, num.features), nrow=1) | |
# Look at the values over each iteration | |
theta.path <- theta | |
for (i in 1:num.iterations) { | |
theta <- theta - alpha * grad(x, y, theta) | |
if(all(is.na(theta))) break | |
theta.path <- rbind(theta.path, theta) | |
if(i > 2) if(all(abs(theta - theta.path[i-1,]) < threshold)) break | |
} | |
if(output.path) return(theta.path) else return(theta.path[nrow(theta.path),]) | |
} | |
unscaled.theta <- gradient.descent(x=x, y=y, num.iterations=num.iterations, output.path=TRUE) | |
scaled.theta <- gradient.descent(x=x.scaled, y=y, num.iterations=num.iterations, output.path=TRUE) | |
summary(glm(chd ~ age + ldl, family = binomial, data=sa.heart)) | |
qplot(1:(nrow(scaled.theta)), scaled.theta[,1], geom=c("line"), xlab="iteration", ylab="theta_1") | |
qplot(1:(nrow(scaled.theta)), scaled.theta[,2], geom=c("line"), xlab="iteration", ylab="theta_2") | |
# Look at output for various different alpha values | |
vary.alpha <- lapply(c(1e-12, 1e-9, 1e-7, 1e-3, 0.1, 0.9), function(alpha) gradient.descent(x=x.scaled, y=y, alpha=alpha, num.iterations=num.iterations, output.path=TRUE)) | |
par(mfrow = c(2, 3)) | |
for (j in 1:6) { | |
plot(vary.alpha[[j]][,2], ylab="area (alpha=1e-9)", xlab="iteration", type="l") | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Thanks!