Created
November 1, 2018 18:38
-
-
Save smeschke/15b7514991f217a36b7707d80f80a8db to your computer and use it in GitHub Desktop.
OpenCV gui to manually fit sine waves
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import cv2, math | |
import numpy as np | |
import pandas as pd | |
import scipy | |
from sklearn import preprocessing | |
from scipy import signal | |
import matplotlib.pyplot as plt | |
#read tracking data from file | |
distances = [] | |
#get pose data - data is generated by open pose video | |
#df = pd.read_csv('/home/stephen/Desktop/source_data/ss552_id_91.csv') | |
df = pd.read_csv('/home/stephen/Desktop/source_data/ss423_id_17.csv') | |
df = pd.read_csv('/home/stephen/Desktop/source_data/ss3_id_16.csv') | |
#smooth it out | |
smoothed_data = [] | |
window_length, polyorder = 27, 2 | |
for i in range(int(len(df.columns)/2)): | |
x = signal.savgol_filter(df[df.columns[i*2]], window_length, polyorder) | |
y = signal.savgol_filter(df[df.columns[i*2+1]], window_length, polyorder) | |
smoothed_data.append(list(zip(x,y))) | |
smoothed_data = np.array(smoothed_data, int) | |
y = pd.DataFrame(y) | |
min_max_scaler = preprocessing.MinMaxScaler() | |
np_scaled = min_max_scaler.fit_transform(y) | |
y = pd.DataFrame(np_scaled) | |
y = y.values*100 | |
z = [] | |
for i in range(len(y)): z.append(i) | |
z = np.array(z) | |
end = 1017 | |
start = 0 | |
y = y[start:end] | |
y = y+550 | |
z = z[start:end] | |
# y = (sin((x+phase)/period) * amplitude) + | |
period = .10 | |
amplitude = 0 | |
mean = 0 | |
phase = 0 | |
period1 = .10 | |
amplitude1 = 0 | |
mean1 = 0 | |
phase1 = 0 | |
first_wave = True | |
def get_y(amplitude, period, mean, phase,amplitude1, period1, mean1, phase1, i): | |
xx = (math.sin((i+phase)/period)*amplitude + mean) + (math.sin((i+phase1)/period1)*amplitude1 + mean1) | |
return int(xx) | |
def get_y_single(amplitude, period, mean, phase, i): | |
xx = (math.sin((i+phase)/period)*amplitude + mean) | |
return int(xx) | |
while True: | |
img = np.zeros((int(max(y))+150,end,3), np.uint8) | |
img[:,:,:] = 123,123,123 | |
for i in range(len(y)-1): | |
a = i, int(y[i]) | |
b = i+1, int(y[i+1]) | |
cv2.line(img, a, b, (255,0,0), 8) | |
for i in range(end): | |
a = i, get_y(amplitude, period, mean, phase,amplitude1, period1, mean1, phase1, i) | |
b = i+1, get_y(amplitude, period, mean, phase,amplitude1, period1, mean1, phase1, i+1) | |
cv2.line(img, a, b, (0, 255,0), 4) | |
for i in range(end): | |
a = i, get_y_single(amplitude, period, mean, phase, i) | |
b = i+1, get_y_single(amplitude, period, mean,phase, i+1) | |
cv2.line(img, a, b, (255, 255,0), 2) | |
for i in range(end): | |
a = i, get_y_single(amplitude1, period1, mean1, phase1, i) | |
b = i+1, get_y_single(amplitude1, period1, mean1, phase1, i+1) | |
cv2.line(img, a, b, (0, 255,255), 2) | |
img = cv2.resize(img, (800,800)) | |
cv2.imshow('img', img) | |
k = cv2.waitKey(0) | |
if k == 27: break | |
#print (amplitude, period, k) | |
if k == 115: | |
if first_wave: first_wave = False | |
else: first_wave = True | |
if first_wave: | |
if k == 180: period += .1 | |
if k == 182: period -= .1 | |
if period<=0: period = .51 | |
if k == 183: amplitude += .51 | |
if k == 185: amplitude -= .51 | |
if k == 184: mean -= 5 | |
if k == 178: mean += 5 | |
if k == 179: phase -= 1 | |
if k == 177: phase += 1 | |
else: | |
if k == 180: period1 += .1 | |
if k == 182: period1 -= .1 | |
if period1<=0: period1 = .51 | |
if k == 183: amplitude1 += .51 | |
if k == 185: amplitude1 -= .51 | |
if k == 184: mean1 -= 5 | |
if k == 178: mean1 += 5 | |
if k == 179: phase1 -= 1 | |
if k == 177: phase1 += 1 | |
print(period, period1) | |
period1 = period/2 | |
cv2.destroyAllWindows() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment