Skip to content

Instantly share code, notes, and snippets.

@smeschke
Created May 10, 2017 17:59
Show Gist options
  • Save smeschke/443cb4a52c1876bad1b2a451c8407041 to your computer and use it in GitHub Desktop.
Save smeschke/443cb4a52c1876bad1b2a451c8407041 to your computer and use it in GitHub Desktop.
Tracks the largest red, green, or pink object found in a video. Outputs a .csv file with the x,y coordinates for each frame.
import cv2
import numpy as np
#h,s,v range of the object to be tracked
#h,s,v,h1,s1,v1 = 27,0,0,82,190,255 #GREEN
#h,s,v,h1,s1,v1 = 168,154,99,177,255,255 #RED
h,s,v,h1,s1,v1 = 156,74,76,166,255,255 #pink
threshold_value = 0
output_path = '/home/stephen/Desktop/423_pink.csv'
cap = cv2.VideoCapture('/home/stephen/Desktop/423.avi')
#takes an image, and a lower and upper bound
#returns only the parts of the image in bounds
def only_color(frame, (b,r,g,b1,r1,g1)):
# Convert BGR to HSV
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# define range of blue color in HSV
lower = np.array([b,r,g])
upper = np.array([b1,r1,g1])
# Threshold the HSV image to get only blue colors
mask = cv2.inRange(hsv, lower, upper)
# Bitwise-AND mask and original image
res = cv2.bitwise_and(frame,frame, mask= mask)
return res, mask
#finds the largest contour in a list of contours
#returns a single contour
def largest_contour(contours):
c = max(contours, key=cv2.contourArea)
return c[0]
#takes an image and the threshold value returns the contours
def get_contours(im, threshold_value):
imgray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)
_ ,thresh = cv2.threshold(imgray,threshold_value,255,0)
_, contours, _ = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
return contours
#finds the center of a contour
#takes a single contour
#returns (x,y) position of the contour
def contour_center(c):
M = cv2.moments(c)
try: center = int(M['m10']/M['m00']), int(M['m01']/M['m00'])
except: center = 0,0
return center
frame_number = 0
positions = []
for i in range(1000000): positions.append((0,0))
#main loop of the program
while True:
#read image from the video
_, img = cap.read()
try: l = img.shape
except: break
#extract only the flesh tones
img, mask = only_color(img, (h,s,v,h1,s1,v1))
#find the contours in the image
contours = get_contours(img, threshold_value)
#if there are contours found in the image:
if len(contours)>0:
try:
#sort the contours by area
c = max(contours, key=cv2.contourArea)
img = cv2.drawContours(img, c ,-1, (0,0,255), 14)
positions[frame_number] = contour_center(c)
except: pass
frame_number += 1
#show the image and wait
#cv2.imshow('img', img)
cv2.imshow('img', cv2.resize(img, (480,700)))
k=cv2.waitKey(1)
if k==27: break
#release the video to avoid memory leaks, and close the window
cap.release()
cv2.destroyAllWindows()
#remove unused parts of the list
positions = positions[:frame_number]
print 'finished tracking'
#write data
import csv
with open(output_path, 'w') as csvfile:
fieldnames = ['x_position', 'y_position']
writer = csv.DictWriter(csvfile, fieldnames = fieldnames)
writer.writeheader()
for position in positions:
x, y = position[0], position[1]
writer.writerow({'x_position': x, 'y_position': y})
print 'finished writing data'
print output_path
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment