Created
July 30, 2021 14:24
-
-
Save smeschke/f19ebfd48581cf1f6b7f441cc93ea129 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import cv2 | |
import pandas as pd | |
import numpy.polynomial.polynomial as poly | |
import math | |
# Read Source Data | |
cap = cv2.VideoCapture('/home/stephen/Desktop/ss5_id_412.MP4') | |
df = pd.read_csv('/home/stephen/Desktop/ss5_id_412.csv') | |
#Write Video Out | |
fourcc = cv2.VideoWriter_fourcc(*'XVID') | |
out = cv2.VideoWriter('/home/stephen/Desktop/parabola.avi', fourcc, 120.0, (480,848)) | |
# Define x and y as the first two columns of the spreadsheet | |
x = df['0'] | |
y = df['1'] | |
# Filter the data to smooth it out | |
from scipy.signal import savgol_filter | |
x = savgol_filter(x, 7, 3) | |
y = savgol_filter(y, 7, 3) | |
# Start at frame number 0 | |
frameNum = 0 | |
# Define trail length | |
trail = 30 | |
# Colors of the rainbow | |
rainbow = [(0,0,255), (0,127,255), (0,255,0), (255,0,0), (95,43,46), (255,0,139)] | |
def distance(a,b): return(math.sqrt((a[0]-b[0])**2+(a[1]-b[1])**2)) | |
# Read a few frames of the video | |
# Define distance to calculate parabola from (in frames) | |
interval = 6 | |
for i in range(interval): | |
_,_ = cap.read() | |
frameNum+= 1 | |
# https://stackoverflow.com/questions/57065080/draw-perpendicular-line-of-fixed-length-at-a-point-of-another-line | |
def perpendicular(slope, target, dist): | |
dy = math.sqrt(3**2/(slope**2+1))*dist | |
dx = -slope*dy | |
left = target[0] - dx, target[1] - dy | |
right = target[0] + dx, target[1] + dy | |
return left, right | |
# Create a list to store past points | |
history = [] | |
completeHistory = [] | |
### This is the first loop through the video | |
### In this loop the rainbow-trail data is collected | |
while True: | |
# Read Image | |
_, img = cap.read() | |
try: _ = img.shape | |
except: break | |
# Define a small distance | |
smallDistance = 0.2 | |
# Find a parabola that fits | |
x_values = x[frameNum-interval:frameNum+interval] | |
y_values = y[frameNum-interval:frameNum+interval] | |
coefs = poly.polyfit(x_values,y_values,2) | |
# Graph x and y values | |
for point in zip(x_values, y_values): | |
point = tuple(np.array(point,int)) | |
#cv2.circle(img, point, 1, (255,0,255), 2) | |
# Calculate the points on either end of the tangent line | |
target = int(x[frameNum]), int(poly.polyval(x[frameNum], coefs)) | |
leftX, rightX = x[frameNum] - smallDistance, x[frameNum] + smallDistance | |
left = leftX, poly.polyval(leftX, coefs) | |
right = rightX, poly.polyval(rightX, coefs) | |
# Calculate the slope of the tangent line | |
slope = (left[1]-right[1])/(left[0]-right[0]) | |
intercept = target[1] - slope*target[0] | |
# Draw line | |
leftPoint = target[0]-10, (target[0]-10)*slope + intercept | |
rightPoint = target[0]+10, (target[0]+10)*slope + intercept | |
leftPoint = tuple(np.array(leftPoint, int)) | |
rightPoint= tuple(np.array(rightPoint, int)) | |
#cv2.line(img, leftPoint, rightPoint, (123,234,123), 3) | |
# Draw the parabola | |
xRange = np.arange(target[0]-9,target[0]+9,1) | |
yRange = poly.polyval(xRange, coefs) | |
rangePoints = zip(xRange, yRange) | |
for ppp in rangePoints: | |
center = tuple(np.array(ppp,int)) | |
#cv2.circle(img, center, 1, 123, 2) | |
#print(yRange) | |
# List to save data for this frame | |
frameHistory = [] | |
# Find Perpendicular points | |
for i in range(len(rainbow)): | |
color = rainbow[i] | |
left, right = perpendicular(slope, target, i-3) | |
left, right = tuple(np.array(left, int)), tuple(np.array(right, int)) | |
point = left | |
#cv2.circle(img, left, 1, color, 1) | |
frameHistory.append(point) | |
history.append(frameHistory) | |
completeHistory.append(frameHistory) | |
# Show the history too | |
a,b,c,d,e,f = zip(*history) | |
for pointList, color in zip([a,b,c,d,e,f], rainbow): | |
for i in range(len(pointList)-1): | |
pass | |
cv2.line(img, pointList[i], pointList[i+1], color, 2) | |
# Pop the oldest frame off the history if the history is longer than 0.25 seconds | |
if len(history)>15: | |
history.pop(0) | |
out.write(img) | |
# Show Image | |
cv2.imshow('img', img) | |
k = cv2.waitKey(1) | |
if k == 27: break | |
frameNum += 1 | |
cv2.destroyAllWindows() | |
cap.release() | |
#Smooth the data | |
smoothed = [] | |
a,b,c,d,e,f = zip(*completeHistory) | |
for i in a,b,c,d,e,f: | |
x, y = zip(*i) | |
x = savgol_filter(x, 27, 3) | |
y = savgol_filter(y, 21, 2) | |
smoothed.append(list(zip(x,y))) | |
# Read Source Data | |
cap = cv2.VideoCapture('/home/stephen/Desktop/ss5_id_412.MP4') | |
fourcc = cv2.VideoWriter_fourcc(*'XVID') | |
out = cv2.VideoWriter('/home/stephen/Desktop/parabola.avi', fourcc, 120.0, (480,848)) | |
frameNum = 0 | |
### This is the second loop through the video | |
### In this loop the smoothed rinbow-trail points are diplayed | |
while True: | |
# Read Image | |
_, img = cap.read() | |
if frameNum>21: | |
for color, line in zip(rainbow, smoothed): | |
pointList = line[frameNum-20:frameNum-5] | |
for i in range(len(pointList)-1): | |
a,b = tuple(np.array(pointList[i], int)), tuple(np.array(pointList[i+1], int)) | |
cv2.line(img, a,b, color, 2) | |
out.write(img) | |
# Show Image | |
cv2.imshow('img', img) | |
k = cv2.waitKey(10) | |
if k == 27: break | |
frameNum += 1 | |
cv2.destroyAllWindows() | |
cap.release() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
https://www.youtube.com/watch?v=_xnA727D8Vc