Last active
February 12, 2019 12:01
-
-
Save smetronic/4ac1025a1dbbb3ec9d076f806fef9cef to your computer and use it in GitHub Desktop.
Peak signal detection in realtime timeseries data
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
public class ZScoreOutput | |
{ | |
public List<double> input; | |
public List<int> signals; | |
public List<double> avgFilter; | |
public List<double> filtered_stddev; | |
} | |
public static class ZScore | |
{ | |
public static ZScoreOutput StartAlgo(List<double> input, int lag, double threshold, double influence) | |
{ | |
// init variables! | |
int[] signals = new int[input.Count]; | |
double[] filteredY = new List<double>(input).ToArray(); | |
double[] avgFilter = new double[input.Count]; | |
double[] stdFilter = new double[input.Count]; | |
var initialWindow = new List<double>(filteredY).Skip(0).Take(lag).ToList(); | |
avgFilter[lag - 1] = Mean(initialWindow); | |
stdFilter[lag - 1] = StdDev(initialWindow); | |
for (int i = lag; i < input.Count; i++) | |
{ | |
if (Math.Abs(input[i] - avgFilter[i - 1]) > threshold * stdFilter[i - 1]) | |
{ | |
signals[i] = (input[i] > avgFilter[i - 1]) ? 1 : -1; | |
filteredY[i] = influence * input[i] + (1 - influence) * filteredY[i - 1]; | |
} | |
else | |
{ | |
signals[i] = 0; | |
filteredY[i] = input[i]; | |
} | |
// Update rolling average and deviation | |
var slidingWindow = new List<double>(filteredY).Skip(i - lag).Take(lag+1).ToList(); | |
var tmpMean = Mean(slidingWindow); | |
var tmpStdDev = StdDev(slidingWindow); | |
avgFilter[i] = Mean(slidingWindow); | |
stdFilter[i] = StdDev(slidingWindow); | |
} | |
// Copy to convenience class | |
var result = new ZScoreOutput(); | |
result.input = input; | |
result.avgFilter = new List<double>(avgFilter); | |
result.signals = new List<int>(signals); | |
result.filtered_stddev = new List<double>(stdFilter); | |
return result; | |
} | |
private static double Mean(List<double> list) | |
{ | |
// Simple helper function! | |
return list.Average(); | |
} | |
private static double StdDev(List<double> values) | |
{ | |
double ret = 0; | |
if (values.Count() > 0) | |
{ | |
double avg = values.Average(); | |
double sum = values.Sum(d => Math.Pow(d - avg, 2)); | |
ret = Math.Sqrt((sum) / (values.Count() - 1)); | |
} | |
return ret; | |
} | |
} | |
//Test | |
var input = new List<double> {1.0, 1.0, 1.1, 1.0, 0.9, 1.0, 1.0, 1.1, 1.0, 0.9, 1.0, | |
1.1, 1.0, 1.0, 0.9, 1.0, 1.0, 1.1, 1.0, 1.0, 1.0, 1.0, 1.1, 0.9, 1.0, 1.1, 1.0, 1.0, 0.9, | |
1.0, 1.1, 1.0, 1.0, 1.1, 1.0, 0.8, 0.9, 1.0, 1.2, 0.9, 1.0, 1.0, 1.1, 1.2, 1.0, 1.5, 1.0, | |
3.0, 2.0, 5.0, 3.0, 2.0, 1.0, 1.0, 1.0, 0.9, 1.0, 1.0, 3.0, 2.6, 4.0, 3.0, 3.2, 2.0, 1.0, | |
1.0, 0.8, 4.0, 4.0, 2.0, 2.5, 1.0, 1.0, 1.0}; | |
int lag = 30; //# for the smoothing functions | |
double threshold = 5.0; //standard deviations for signal | |
double influence = 0.0; //between 0 and 1, where 1 is normal influence, 0.5 is | |
var output = ZScore.StartAlgo(input, lag, threshold, influence); |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment