#Booth's algorithm
-13 * 9 = -117
-13 = 10011
9 = 01001
-117 = 11100 01011
multiplicand = 10011
multiplier = 01001
product = 11100 01011
Let A = 01001 (the multiplier)
Let B = 10011 (the multiplicand)
-B = 01101 (compliment of B)
Note: instead of subtracting the multiplicand (B) in the appopriate steps below, I will be adding the compliment of the multiplicand (-B). This is a personal preference as I don't like binary subtraction
Iteration Step Product L Desc
0 0 00000 01001 0 init
1 1 01101 01001 0 Subtract (add -B to leading 5 bits) 00000 + 01101 = 01101
2 00110 10100 1 logical shift right
2 1 11001 10100 1 Add (add B to leading 5 bits) 00110 + 10011 = 11001
2 11100 11010 0 logical shift right
3 1 11100 11010 0 No Op
2 11110 01101 0 logical shift right
4 1 01011 01101 0 Subtract (add -B to leading 5 bits) 11110 + 01101 = 101011 (drop most sig bit)
2 00101 10110 1 logical shift right
5 1 11000 10110 1 Add (add B to leading 5 bits) 00101 + 10011 = 11000
2 11100 01011 0 logical shift right
Done!