Skip to content

Instantly share code, notes, and snippets.

@smothiki
Last active September 21, 2023 23:52
Show Gist options
  • Save smothiki/263a1264a68a4534c5bb0ade89cd828c to your computer and use it in GitHub Desktop.
Save smothiki/263a1264a68a4534c5bb0ade89cd828c to your computer and use it in GitHub Desktop.
import logging
import sys
import warnings
from urllib.parse import urlparse
import numpy as np
import pandas as pd
from sklearn.linear_model import ElasticNet
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
from sklearn.model_selection import train_test_split
import mlflow
import mlflow.sklearn
from mlflow.models import infer_signature
import onnx
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType
logging.basicConfig(level=logging.WARN)
logger = logging.getLogger(__name__)
def convert_to_onnx(model, data):
# print(data.shape[0]])
initial_type = [('float_input', FloatTensorType([None, 11]))]
onnx_model = convert_sklearn(model, initial_types=initial_type)
print("onnx_model.type:",type(onnx_model))
mlflow.set_tag("onnx_version",onnx.__version__)
return onnx_model
def eval_metrics(actual, pred):
rmse = np.sqrt(mean_squared_error(actual, pred))
mae = mean_absolute_error(actual, pred)
r2 = r2_score(actual, pred)
return rmse, mae, r2
if __name__ == "__main__":
warnings.filterwarnings("ignore")
np.random.seed(40)
# Read the wine-quality csv file from the URL
csv_url = (
"https://raw.githubusercontent.com/mlflow/mlflow/master/tests/datasets/winequality-red.csv"
)
try:
data = pd.read_csv(csv_url, sep=";")
except Exception as e:
logger.exception(
"Unable to download training & test CSV, check your internet connection. Error: %s", e
)
# Split the data into training and test sets. (0.75, 0.25) split.
train, test = train_test_split(data)
# The predicted column is "quality" which is a scalar from [3, 9]
train_x = train.drop(["quality"], axis=1)
test_x = test.drop(["quality"], axis=1)
train_y = train[["quality"]]
test_y = test[["quality"]]
alpha = float(sys.argv[1]) if len(sys.argv) > 1 else 0.5
l1_ratio = float(sys.argv[2]) if len(sys.argv) > 2 else 0.5
with mlflow.start_run():
lr = ElasticNet(alpha=alpha, l1_ratio=l1_ratio, random_state=42)
lr.fit(train_x, train_y)
predicted_qualities = lr.predict(test_x)
(rmse, mae, r2) = eval_metrics(test_y, predicted_qualities)
print(f"Elasticnet model (alpha={alpha:f}, l1_ratio={l1_ratio:f}):")
print(f" RMSE: {rmse}")
print(f" MAE: {mae}")
print(f" R2: {r2}")
mlflow.log_param("alpha", alpha)
mlflow.log_param("l1_ratio", l1_ratio)
mlflow.log_metric("rmse", rmse)
mlflow.log_metric("r2", r2)
mlflow.log_metric("mae", mae)
predictions = lr.predict(train_x)
signature = infer_signature(train_x, predictions)
mlflow.sklearn.log_model(lr, "model", signature=signature)
onnx_model = convert_to_onnx(lr, test_x)
mlflow.onnx.log_model(onnx_model, "onnx-model")
!pip3 install scikit-learn pandas numpy onnx==1.13.1 onnxruntime skl2onnx
import mlflow
from sklearn.model_selection import train_test_split
import numpy as np
import mlflow.onnx
import onnx
import onnxruntime as rt
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType
def score(model, data_ndarray):
sess = rt.InferenceSession(model.SerializeToString(), providers=['CPUExecutionProvider'])
input_name = sess.get_inputs()[0].name
print(sess.get_inputs()[0])
return sess.run(None,{input_name: data_ndarray})
# return sess.run(None, {input_name: data_ndarray.astype(np.float32)})[0]
logged_model = '/home/cdsw/.experiments/2hrm-o9a9-1qwd-qb17/9l7r-lz3a-tast-9pfy/artifacts/onnx-model'
model=mlflow.onnx.load_model("runs:/11yt-wh5d-d36y-13hy/onnx-model")
# Predict on a Pandas DataFrame.
csv_url = ("https://raw.githubusercontent.com/mlflow/mlflow/master/tests/datasets/winequality-red.csv")
try:
data = pd.read_csv(csv_url, sep=";")
except Exception as e:
logger.exception("Unable to download training & test CSV, check your internet connection. Error: %s", e)
train, test = train_test_split(data,test_size=1)
print(test.shape[0])
print(test[:1])
data=np.array([6.2, 0.66, 0.48, 1.2, 0.029, 29, 75, 0.98, 3.33, 0.39, 12.8], dtype='float')
train_x = train.drop(["quality"], axis=1)
test_x = test.drop(["quality"], axis=1)
print(test_x)
score(model, data)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment