Skip to content

Instantly share code, notes, and snippets.

@smothiki
Last active September 27, 2023 16:16
Show Gist options
  • Save smothiki/36c946eb7460b017a1b0eb81f3c529a3 to your computer and use it in GitHub Desktop.
Save smothiki/36c946eb7460b017a1b0eb81f3c529a3 to your computer and use it in GitHub Desktop.
test file to convert sklian to onnx
!pip install onnx==1.13.1 onnxruntime skl2onnx
import logging
import sys
import warnings
from urllib.parse import urlparse
import numpy as np
import pandas as pd
from sklearn.linear_model import ElasticNet
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
from sklearn.model_selection import train_test_split
import mlflow
import mlflow.sklearn
from mlflow.models import infer_signature
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType
logging.basicConfig(level=logging.WARN)
logger = logging.getLogger(__name__)
def convert_to_onnx(model, data):
initial_type = [('float_input', FloatTensorType([None, data.shape[0]]))]
onnx_model = convert_sklearn(model, initial_types=initial_type)
print("onnx_model.type:",type(onnx_model))
mlflow.set_tag("onnx_version",onnx.__version__)
return onnx_model
def eval_metrics(actual, pred):
rmse = np.sqrt(mean_squared_error(actual, pred))
mae = mean_absolute_error(actual, pred)
r2 = r2_score(actual, pred)
return rmse, mae, r2
if __name__ == "__main__":
warnings.filterwarnings("ignore")
np.random.seed(40)
# Read the wine-quality csv file from the URL
csv_url = (
"https://raw.githubusercontent.com/mlflow/mlflow/master/tests/datasets/winequality-red.csv"
)
try:
data = pd.read_csv(csv_url, sep=";")
except Exception as e:
logger.exception(
"Unable to download training & test CSV, check your internet connection. Error: %s", e
)
# Split the data into training and test sets. (0.75, 0.25) split.
train, test = train_test_split(data)
# The predicted column is "quality" which is a scalar from [3, 9]
train_x = train.drop(["quality"], axis=1)
test_x = test.drop(["quality"], axis=1)
train_y = train[["quality"]]
test_y = test[["quality"]]
alpha = float(sys.argv[1]) if len(sys.argv) > 1 else 0.5
l1_ratio = float(sys.argv[2]) if len(sys.argv) > 2 else 0.5
with mlflow.start_run():
lr = ElasticNet(alpha=alpha, l1_ratio=l1_ratio, random_state=42)
lr.fit(train_x, train_y)
predicted_qualities = lr.predict(test_x)
(rmse, mae, r2) = eval_metrics(test_y, predicted_qualities)
print(f"Elasticnet model (alpha={alpha:f}, l1_ratio={l1_ratio:f}):")
print(f" RMSE: {rmse}")
print(f" MAE: {mae}")
print(f" R2: {r2}")
mlflow.log_param("alpha", alpha)
mlflow.log_param("l1_ratio", l1_ratio)
mlflow.log_metric("rmse", rmse)
mlflow.log_metric("r2", r2)
mlflow.log_metric("mae", mae)
predictions = lr.predict(train_x)
signature = infer_signature(train_x, predictions)
mlflow.sklearn.log_model(lr, "model", signature=signature)
onnx_model = convert_to_onnx(dt, X_test)
mlflow.onnx.log_model(onnx_model, "onnx-model")
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment