Skip to content

Instantly share code, notes, and snippets.

FWIW: I (@rondy) am not the creator of the content shared here, which is an excerpt from Edmond Lau's book. I simply copied and pasted it from another location and saved it as a personal note, before it gained popularity on news.ycombinator.com. Unfortunately, I cannot recall the exact origin of the original source, nor was I able to find the author's name, so I am can't provide the appropriate credits.


Effective Engineer - Notes

What's an Effective Engineer?

@ruckus
ruckus / statistics.sql
Created June 5, 2013 23:26
Postgres statistics queries
** Find commmonly accessed tables and their use of indexes:
SELECT relname,seq_tup_read,idx_tup_fetch,cast(idx_tup_fetch AS numeric) / (idx_tup_fetch + seq_tup_read) AS idx_tup_pct FROM pg_stat_user_tables WHERE (idx_tup_fetch + seq_tup_read)>0 ORDER BY idx_tup_pct;
Returns output like:
relname | seq_tup_read | idx_tup_fetch | idx_tup_pct
----------------------+--------------+---------------+------------------------
schema_migrations | 817 | 0 | 0.00000000000000000000
user_device_photos | 349 | 0 | 0.00000000000000000000
@hellerbarde
hellerbarde / latency.markdown
Created May 31, 2012 13:16 — forked from jboner/latency.txt
Latency numbers every programmer should know

Latency numbers every programmer should know

L1 cache reference ......................... 0.5 ns
Branch mispredict ............................ 5 ns
L2 cache reference ........................... 7 ns
Mutex lock/unlock ........................... 25 ns
Main memory reference ...................... 100 ns             
Compress 1K bytes with Zippy ............. 3,000 ns  =   3 µs
Send 2K bytes over 1 Gbps network ....... 20,000 ns  =  20 µs
SSD random read ........................ 150,000 ns  = 150 µs

Read 1 MB sequentially from memory ..... 250,000 ns = 250 µs