Created
January 25, 2019 16:23
-
-
Save smsharma/74289ddddc2dffe3595684cacb2573b4 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from astropy.cosmology import Planck15 | |
from units import * | |
import sys, os | |
if os.environ['DIFF']: # Whether to use Theano version of lensing gradients | |
from profiles_theano import * | |
else: | |
from profiles import * | |
class LensingSim(): | |
def __init__(self, lenses_list=[{}], | |
sources_list=[{}], | |
global_dict={}, | |
observation_dict={}): | |
""" | |
Class for simulation of strong lensing images | |
""" | |
self.lenses_list = lenses_list | |
self.sources_list = sources_list | |
self.global_dict = global_dict | |
self.observation_dict = observation_dict | |
self.set_up_observation() | |
self.set_up_global() | |
def set_up_global(self): | |
""" Set some global variables so don't need to recompute each time | |
""" | |
self.z_s = self.global_dict['z_s'] | |
self.z_l = self.global_dict['z_l'] | |
self.D_s = Planck15.angular_diameter_distance(z=self.z_s).value*Mpc | |
self.D_l = Planck15.angular_diameter_distance(z=self.z_l).value*Mpc | |
def set_up_observation(self): | |
""" Set up observational grid and parameters | |
""" | |
# Coordinate limits (in arcsecs) | |
self.xlims = self.observation_dict['xlims'] | |
self.ylims = self.observation_dict['ylims'] | |
# Size of grid | |
self.nx = self.observation_dict['nx'] | |
self.ny = self.observation_dict['ny'] | |
# Exposure and background noise level | |
self.exposure = self.observation_dict['exposure'] | |
self.A_iso = self.observation_dict['A_iso'] | |
# x/y-coordinates of grid and pixel area in arcsec**2 | |
self.x_coords = (self.xlims[1] - self.xlims[0]) * np.outer(np.ones(self.ny), np.arange(self.nx)) / float(self.nx-1) + self.xlims[0] | |
self.y_coords = (self.ylims[1] - self.ylims[0]) * np.outer(np.arange(self.ny), np.ones(self.nx)) / float(self.ny-1) + self.ylims[0] | |
self.pixarea = ((self.xlims[1] - self.xlims[0])/self.nx)*((self.ylims[1] - self.ylims[0])/self.ny) | |
def lensed_image(self): | |
""" Get strongly lensed image | |
""" | |
# Get lensing potential gradients | |
xg, yg = np.zeros((self.nx, self.ny)), np.zeros((self.nx, self.ny)) | |
for lens_dict in self.lenses_list: | |
if lens_dict['profile'] == 'nfw': | |
self.theta_x_sub = lens_dict['theta_x'] | |
self.theta_y_sub = lens_dict['theta_y'] | |
self.M_sub = lens_dict['M200'] | |
_xg, _yg = deflection_nfw(self.x_coords, self.y_coords, x0=self.theta_x_sub, y0=self.theta_y_sub, M=self.M_sub, D_s=self.D_s, D_l=self.D_l) | |
xg += _xg | |
yg += _yg | |
elif lens_dict['profile'] == 'sis': | |
self.theta_x_hst = lens_dict['theta_x'] | |
self.theta_y_hst = lens_dict['theta_y'] | |
self.theta_E_hst = lens_dict['theta_E'] | |
_xg, _yg = deflection_sis(self.x_coords, self.y_coords, x0=self.theta_x_hst, y0=self.theta_y_hst, b=self.theta_E_hst) | |
xg += _xg | |
yg += _yg | |
else: | |
raise Exception('Unknown lens profile specification!') | |
# Get lensed image | |
self.i_lens = np.zeros((self.nx, self.ny)) | |
for source_dict in self.sources_list: | |
if source_dict['profile'] == 'sersic': | |
self.I_gal = source_dict['I_gal'] | |
self.n_srsc = source_dict['n_srsc'] | |
self.theta_e_gal = source_dict['theta_e_gal'] | |
self.i_lens += f_gal_sersic(self.x_coords-xg, self.y_coords-yg, self.n_srsc, self.I_gal, self.theta_e_gal) | |
else: | |
raise Exception('Unknown source profile specification!') | |
self.i_iso = self.A_iso*np.ones_like(self.i_lens) # Isotropic background | |
self.i_tot = (self.i_lens + self.i_iso)*self.exposure*self.pixarea # Total lensed image | |
return self.i_tot |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment