Created
June 4, 2018 17:19
-
-
Save snakers4/23b6111c158ed1ade6e843323dedf88d to your computer and use it in GitHub Desktop.
Loss for adversarial attacks
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from utils.PyTorchSSIM import SSIM as SSIMLoss | |
class AttackerLoss(nn.Module): | |
def __init__(self, | |
gamma=0.9, | |
use_running_mean=False, | |
ssim_weight=10, | |
l2_weight=1): | |
super().__init__() | |
self.gamma = gamma | |
self.ssim_loss = SSIMLoss(window_size = 11) | |
self.l2_loss = self.eucl_loss | |
self.use_running_mean = use_running_mean | |
self.ssim_weight=ssim_weight | |
self.l2_weight=l2_weight | |
if self.use_running_mean == True: | |
self.register_buffer('running_similarity_loss', torch.zeros(1)) | |
self.register_buffer('running_distance_loss', torch.zeros(1)) | |
self.reset_parameters() | |
def mse_loss(self,input,target): | |
return torch.sum((input - target)**2) / input.size(0) | |
def eucl_loss(self,input,target): | |
return torch.sum(torch.sqrt(torch.sum((input - target)**2,dim=1))) / input.size(0) | |
def reset_parameters(self): | |
self.running_similarity_loss.zero_() | |
self.running_distance_loss.zero_() | |
def forward(self, | |
source_imgs, | |
mod_imgs, | |
avg_target_descriptions, | |
mod_descriptions): | |
assert len(source_imgs.shape) == 4 | |
assert len(mod_imgs.shape) == 4 | |
assert len(avg_target_descriptions.shape) == 2 | |
assert len(mod_descriptions.shape) == 2 | |
assert avg_target_descriptions.size(1) == 512 | |
assert mod_descriptions.size(1) == 512 | |
assert avg_target_descriptions.size(1) == 512 | |
assert mod_descriptions.size(1) == 512 | |
assert source_imgs.size()[1:] == (3,112,112) | |
assert mod_imgs.size()[1:] == (3,112,112) | |
# target ssim values are 0.95-1, so loss is expected to be 0 - 0.05 | |
similarity_loss = 1 - self.ssim_loss(source_imgs,mod_imgs).mean() | |
distance_loss = self.l2_loss(mod_descriptions,avg_target_descriptions) | |
if self.use_running_mean == True: | |
if similarity_loss.data[0]<0.025: | |
smw = 0 | |
dmw = 1 | |
else: | |
self.running_similarity_loss = self.running_similarity_loss * self.gamma + similarity_loss.data * (1 - self.gamma) | |
self.running_distance_loss = self.running_distance_loss * self.gamma + distance_loss.data * (1 - self.gamma) | |
sm = float(self.running_similarity_loss) | |
dm = float(self.running_distance_loss) | |
smf = sm / (sm + dm) | |
dmf = dm / (sm + dm) | |
smw = 1 - smf | |
dmw = 1 - dmf | |
else: | |
if similarity_loss.data[0]<0.025: | |
smw = 0 | |
dmw = 1 | |
else: | |
smw = self.ssim_weight | |
dmw = self.l2_weight | |
composite_loss = smw * similarity_loss + dmw * distance_loss | |
return composite_loss, similarity_loss, distance_loss |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment