Created
September 27, 2018 05:45
-
-
Save sneakers-the-rat/0be816cd9c025f2cb9f091798b3dafad to your computer and use it in GitHub Desktop.
play/render elliot's pupil fit
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# renamed files to 'vid.avi' and 'points.csv' | |
# deleted first row of points.csv | |
# call this and use -p 'y'/'n', -r 'y'/'n' to control playing and rendering the video | |
# or do ./elliot_pupil.py --help | |
# you could comment out the skvideo and tqdm imports and objects if ya don't want to install/render. | |
import cv2 | |
import pandas as pd | |
import numpy as np | |
from skimage import draw, measure | |
from skvideo import io | |
from itertools import product | |
import argparse | |
from tqdm import trange | |
def draw_points(frame, x, y, color): | |
point_adds = product(range(-2,2), range(-2,2)) | |
for pt in point_adds: | |
try: | |
frame[x+pt[0],y+pt[1]] = color | |
except IndexError: | |
pass | |
return frame | |
def main(): | |
# load points, use first two rows as header | |
pts = pd.read_csv(base_dir+'points.csv', header=[0,1]) | |
# rename columns, joining the multiindex | |
pts.columns = [' '.join(col).strip() for col in pts.columns.values] | |
# melt & clean dataframe into long format | |
pts = pts.melt(id_vars='frame') | |
pts['point'], pts['type'] = pts['variable'].str.split(' ', 1).str | |
n_pts = len(pts.point.unique()) | |
pts.drop('variable', axis=1,inplace=True) | |
# pivot the df to two indices, frame, point, and the likelihood and coords as columns | |
pts = pd.pivot_table(pts, values='value', index=['frame', 'point'], columns='type') | |
frame_points = pts.groupby('frame') | |
# make color gradient | |
colors = np.column_stack((np.linspace(255,0,num=n_pts, dtype=np.int), | |
np.linspace(0,255,num=n_pts, dtype=np.int), | |
np.zeros((n_pts), dtype=np.int))) | |
if render: | |
# make writer | |
out_fn = base_dir + 'vid_draw.mp4' | |
writer = io.FFmpegWriter(out_fn) | |
# open video and play | |
vid = cv2.VideoCapture(base_dir + 'vid.avi') | |
if play: | |
cv2.namedWindow('play', flags=cv2.WINDOW_NORMAL) | |
n_frame = 0 | |
thetas = np.linspace(-np.pi, np.pi, 50) | |
emod = measure.EllipseModel() | |
# iter frames, draw points | |
total_frames = int(vid.get(cv2.CAP_PROP_FRAME_COUNT)) | |
for i in trange(total_frames): | |
# if we try to quit, quit nicely | |
k = cv2.waitKey(1) & 0xFF | |
if k == ord('\r'): | |
break | |
# grab frame | |
ret, frame = vid.read() | |
if ret == False: | |
break | |
# draw points | |
n_frame = int(vid.get(cv2.CAP_PROP_POS_FRAMES)) | |
# first the ellipse | |
rows = frame_points.get_group(n_frame) | |
xy = np.column_stack((rows['y'], rows['x'])) | |
emod.estimate(xy) | |
e_points = emod.predict_xy(thetas).astype(np.int) | |
for e_pts in e_points: | |
frame = draw_points(frame, e_pts[0], e_pts[1], [0,0,255]) | |
# and then the points themselves | |
for color, (idx, row) in zip(colors, rows.iterrows()): | |
frame = draw_points(frame, int(row['y']), int(row['x']), color) | |
if play: | |
cv2.imshow('play', frame) | |
if render: | |
writer.writeFrame(frame) | |
if play: | |
cv2.destroyAllWindows() | |
if render: | |
writer.close() | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(description='Play or render a pupil video') | |
parser.add_argument('-p', '--play', help="Play video? (y/n)") | |
parser.add_argument('-r', '--render', help="Render video? (y/n)") | |
args = parser.parse_args() | |
play = True | |
render = False | |
if args.play: | |
if args.play.lower() == 'n': | |
play = False | |
if args.render: | |
if args.render.lower() == 'y': | |
render = True | |
base_dir = "/Users/jonny/elliott_pupil/" | |
main() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment