Last active
January 6, 2023 15:20
-
-
Save snewcomer/8785f1c2b715aa78030b5ff7b4557b05 to your computer and use it in GitHub Desktop.
cal training data
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
from datetime import datetime | |
cal = pd.read_csv('cal.csv') | |
# clean summary | |
cal = cal.query("summary not in ('Mid-week Meditation', 'Coffee Chat: Meet our New Hires!')") | |
cal = cal[cal['summary'].str.contains("Company Holiday") == False] | |
# clean dtstart | |
parsed = pd.to_datetime(cal["dtstart"], errors="coerce").fillna(pd.to_datetime(cal["dtstart"], format="%Y-%d-%m", errors="coerce")) | |
ordinal = pd.to_numeric(cal["dtstart"], errors="coerce").apply(lambda x: pd.Timestamp("1899-12-30")+pd.Timedelta(x, unit="D")) | |
cal['dtstart'] = parsed.fillna(ordinal) | |
# still might have problems | |
cal = cal.dropna() | |
cal['dtstart'] = cal['dtstart'].apply(lambda x: datetime.replace(x, tzinfo=None)) | |
cal = cal.reset_index(drop=True) | |
cal['weekday'] = cal['dtstart'].dt.weekday | |
cal = cal.sort_values(by='dtstart', ascending=False) | |
#cal.to_csv("out.csv", columns=['dtstart', 'weekday', 'summary']) | |
gr = cal.groupby(cal['weekday'])['dtstart'].count() | |
print(gr) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment