Created
March 21, 2020 03:10
-
-
Save sobamchan/1bb50c23de0e9b72eadfe60a9ae520a8 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from pathlib import Path | |
import tarfile | |
import wget | |
import pandas as pd | |
URL = "https://www.rondhuit.com/download/ldcc-20140209.tar.gz" | |
SAVETO = Path("./livedoor-news-data.tar.gz") | |
DATASET_PATH = Path("dataset") | |
def main(): | |
if not DATASET_PATH.exists(): | |
filepath = wget.download(URL) | |
with tarfile.open(filepath) as fin: | |
fin.extractall(DATASET_PATH) | |
it_titles = [] | |
dokujo_titles = [] | |
for fpath in (DATASET_PATH / "text" / "it-life-hack").glob("it-*.txt"): # NOQA | |
it_titles.append((fpath.read_text().split("\n")[2])) | |
for fpath in (DATASET_PATH / "text" / "dokujo-tsushin").glob("dokujo-*.txt"): # NOQA | |
dokujo_titles.append((fpath.read_text().split("\n")[2])) | |
return pd.DataFrame({ | |
"text": it_titles + dokujo_titles, | |
"label": [0] * len(it_titles) + [1] * len(dokujo_titles) | |
}).to_csv("./dataset.csv", index=False) | |
if __name__ == "__main__": | |
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import pandas as pd | |
from sklearn.model_selection import train_test_split | |
from sklearn.svm import SVC | |
import sister | |
def main(): | |
dataset = pd.read_csv("./dataset.csv") | |
texts, labels = zip(*dataset[["text", "label"]].values.tolist()) | |
train_texts, test_texts, train_labels, test_labels =\ | |
train_test_split(texts, labels, stratify=labels) | |
sentence_embedding = sister.MeanEmbedding(lang="ja") | |
train_x = np.array([sentence_embedding(t) for t in train_texts]) | |
test_x = np.array([sentence_embedding(t) for t in test_texts]) | |
clf = SVC(kernel="linear") | |
clf.fit(train_x, train_labels) | |
print(clf.score(test_x, test_labels)) | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment